Son Hyeoncheol Francis, Kim Kyung-Jin
School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
Biochem Biophys Res Commun. 2018 Jan 8;495(2):1815-1821. doi: 10.1016/j.bbrc.2017.11.097. Epub 2017 Dec 9.
l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5'-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.
L-赖氨酸是一种必需氨基酸,被广泛用作人类和动物的食品补充剂。内消旋二氨基庚二酸脱羧酶(DAPDC)通过脱羧反应将内消旋二氨基庚二酸(meso-DAP)转化为L-赖氨酸,催化了从头合成L-赖氨酸生物合成途径的最后一步。为了阐明其分子机制,我们测定了谷氨酸棒杆菌(CgDAPDC)中DAPDC的晶体结构。PLP辅因子结合在桶状结构域的中心,并与催化性赖氨酸75残基形成席夫碱。我们还测定了与5'-磷酸吡哆醛(PLP)和L-赖氨酸产物形成复合物的CgDAPDC结构,并揭示该蛋白具有一个最佳的底物结合口袋,以容纳meso-DAP作为底物。将CgDAPDC与其他具有不同底物特异性的氨基酸脱羧酶进行结构比较,发现CgDAPDC中α15螺旋的位置以及位于该螺旋上的残基对于确定氨基酸脱羧酶的底物特异性至关重要。