Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA.
J Biol Chem. 2010 Aug 13;285(33):25708-19. doi: 10.1074/jbc.M110.121137. Epub 2010 Jun 8.
Pyridoxal 5'-phosphate (PLP)-dependent basic amino acid decarboxylases from the beta/alpha-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-A resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the beta/alpha-barrel domain of one subunit and the beta-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the beta-barrel domain we refer to as the "specificity helix." Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu(314), which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5'-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.
吡哆醛 5'-磷酸(PLP)依赖的β/α桶状折叠类(第 IV 组)碱性氨基酸脱羧酶存在于大多数生物体中,催化各种底物的脱羧,这些底物对多胺和赖氨酸生物合成至关重要。在此,我们描述了细菌生物合成精氨酸脱羧酶(ADC)和羧基腐胺脱羧酶(CANSDC)的首个 X 射线结构测定,分辨率分别为 2.3 和 2.0-A,以胍丁胺和腐胺为产物复合物进行解析。尽管整体序列同一性较低,但单体和二聚体结构与该家族中的其他酶相似,活性位点在一个亚基的β/α桶域和另一个β桶之间形成。ADC 包含一个独特的结构域间插入(4 螺旋束)和一个 C 末端延伸(3 螺旋束),在不对称单元中以四聚体形式包装,插入部分形成二聚体和四聚体界面。分析超速离心研究证实,ADC 的溶液结构为四聚体。对不同碱性氨基酸的特异性似乎主要来自β桶域中一个螺旋的位置变化和氨基酸替换,我们将其称为“特异性螺旋”。此外,在 CANSDC 中,与其他底物的远端氨基相互作用的关键酸性残基被 Leu(314)取代,Leu(314)与腐胺的脂族部分相互作用。在 ADC 中没有形成精氨酸或 CANSDC 中没有形成腐胺与吡哆醛 5'-磷酸形成席夫碱,这表明产物复合物可能通过减缓逆反应来促进产物释放。这些研究为共同结构折叠中新型功能的进化提供了结构基础的深入了解。