Suppr超能文献

利用低纵横比孔隙区分单个细菌形状。

Discriminating single-bacterial shape using low-aspect-ratio pores.

作者信息

Tsutsui Makusu, Yoshida Takeshi, Yokota Kazumichi, Yasaki Hirotoshi, Yasui Takao, Arima Akihide, Tonomura Wataru, Nagashima Kazuki, Yanagida Takeshi, Kaji Noritada, Taniguchi Masateru, Washio Takashi, Baba Yoshinobu, Kawai Tomoji

机构信息

The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.

Department of Applied Chemistry, Graduate School of Engineering and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

出版信息

Sci Rep. 2017 Dec 12;7(1):17371. doi: 10.1038/s41598-017-17443-6.

Abstract

Conventional concepts of resistive pulse analysis is to discriminate particles in liquid by the difference in their size through comparing the amount of ionic current blockage. In sharp contrast, we herein report a proof-of-concept demonstration of the shape sensing capability of solid-state pore sensors by leveraging the synergy between nanopore technology and machine learning. We found ionic current spikes of similar patterns for two bacteria reflecting the closely resembled morphology and size in an ultra-low thickness-to-diameter aspect-ratio pore. We examined the feasibility of a machine learning strategy to pattern-analyse the sub-nanoampere corrugations in each ionic current waveform and identify characteristic electrical signatures signifying nanoscopic differences in the microbial shape, thereby demonstrating discrimination of single-bacterial cells with accuracy up to 90%. This data-analytics-driven microporescopy capability opens new applications of resistive pulse analyses for screening viruses and bacteria by their unique morphologies at a single-particle level.

摘要

传统的电阻脉冲分析概念是通过比较离子电流阻塞量,根据粒子大小差异来区分液体中的粒子。与之形成鲜明对比的是,我们在此报告了一个概念验证演示,即利用纳米孔技术与机器学习之间的协同作用,展示固态孔传感器的形状传感能力。我们发现,在一个超低厚度与直径比的孔中,两种细菌的离子电流尖峰模式相似,这反映了它们极为相似的形态和大小。我们研究了一种机器学习策略的可行性,该策略用于对每个离子电流波形中的亚纳安波纹进行模式分析,并识别出表示微生物形状纳米级差异的特征电信号,从而证明对单细菌细胞的鉴别准确率高达90%。这种由数据分析驱动的微孔显微镜能力为电阻脉冲分析开辟了新的应用领域,可在单粒子水平上根据病毒和细菌的独特形态对它们进行筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db30/5727063/a35c0cd84fa7/41598_2017_17443_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验