Goyal Gaurav, Mulero Rafael, Ali Jamel, Darvish Armin, Kim Min Jun
School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA.
Electrophoresis. 2015 May;36(9-10):1164-71. doi: 10.1002/elps.201400570. Epub 2015 Apr 20.
This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis.
本文描述了使用低纵横比固态微孔进行的微粒和细菌转运研究。在200纳米厚的独立氮化硅膜中制造了直径为5微米的微孔,从而得到纵横比极低(标称值为0.04)的孔。对于微粒转运实验,使用了尺寸范围为1 - 4微米的磺化聚苯乙烯微粒和磁性微珠。利用微粒转运特性,我们发现微粒转运仅导致孔的几何电阻发生变化,而接入电阻保持恒定。此外,我们展示了我们的微孔利用串联磁性微球探测转运分析物高分辨率形状信息的能力。对于多珠结构的每个微球都观察到了明显的电流下降峰。对于细菌转运实验,使用了无鞭毛的大肠杆菌(HCB 5菌株)和野生型有鞭毛的鼠伤寒沙门氏菌(SJW1103菌株)。获得了两种细菌截然不同的电流特征,并且这种转运行为的差异归因于细菌表面蛋白质分布的不同。我们的研究结果可能有助于开发用于高分辨率微粒表征和单细胞分析的低纵横比孔。