Department of Medical Physics, University of Wisconsin, 1111 Highland Ave, Room 1005, Madison, WI 53792, United States of America.
Phys Med Biol. 2018 Jan 30;63(3):035021. doi: 10.1088/1361-6560/aaa175.
The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations.
The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUV distributions at both pre and post treatment. This study included 57 patients that underwent F-fluorodeoxyglucose (F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent F-Fluorothymidine (F-FLT) PET scans at our institution.
After applying the optimal Box-Cox transformations, neither the pre nor the post treatment F-FDG SUV distributions deviated significantly from normality (P > 0.10). Similar results were found for F-FLT PET SUV distributions (P > 0.10). For both F-FDG and F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both F-FDG and F-FLT where a log transformation was not optimal for providing normal SUV distributions.
Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when the log transformation is insufficient. The log transformation is not always the appropriate transformation for producing normally distributed PET SUVs.
正电子发射断层扫描(PET)标准化摄取值(SUV)测量的统计分析具有挑战性,因为 SUV 分布呈偏态。这限制了用于分析 SUV 测量的强大参数统计模型的使用。在实践中经常使用的一种特定方法是盲目使用对数变换,这可能会导致 SUV 分布正常,也可能不会。本研究旨在确定导致肿瘤提取的 PET SUV 呈正态分布的最佳变换,并评估治疗对最佳变换的影响。
通过迭代 Box-Cox 变换参数(λ)并选择使 Shapiro-Wilk P 值最大化的参数来确定产生肿瘤 SUV 正态分布的最佳变换。在治疗前后均确定了肿瘤 SUV 分布的最佳变换。本研究包括 57 名接受 F-氟脱氧葡萄糖(F-FDG)PET 扫描的患者(公开数据集)。此外,为了测试我们的变换方法的通用性,我们还包括了在我们机构接受 F-氟胸腺嘧啶(F-FLT)PET 扫描的 27 名患者的分析。
应用最佳 Box-Cox 变换后,无论是治疗前还是治疗后的 F-FDG SUV 分布均无显著偏离正态性(P > 0.10)。F-FLT PET SUV 分布也得到了类似的结果(P > 0.10)。对于 F-FDG 和 F-FLT SUV 分布,偏度和峰度从治疗前到治疗后增加,导致治疗前到治疗后的最佳 Box-Cox 变换参数减小。对于 F-FDG 和 F-FLT 都存在一些分布类型,对数变换不适用于提供正常的 SUV 分布。
Box-Cox 变换的优化为识别当对数变换不足时的正常 SUV 变换提供了一种解决方案。对数变换并不总是产生正态分布的 PET SUV 的适当变换。