Suppr超能文献

基于未知尺寸椭圆条纹图像的双目视觉传感器标定

Calibration of Binocular Vision Sensors Based on Unknown-Sized Elliptical Stripe Images.

作者信息

Liu Zhen, Wu Suining, Yin Yang, Wu Jinbo

机构信息

Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China.

School of Naval Architecture & Ocean Engineering, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074, China.

出版信息

Sensors (Basel). 2017 Dec 13;17(12):2873. doi: 10.3390/s17122873.

Abstract

Most of the existing calibration methods for binocular stereo vision sensor (BSVS) depend on a high-accuracy target with feature points that are difficult and costly to manufacture and. In complex light conditions, optical filters are used for BSVS, but they affect imaging quality. Hence, the use of a high-accuracy target with certain-sized feature points for calibration is not feasible under such complex conditions. To solve these problems, a calibration method based on unknown-sized elliptical stripe images is proposed. With known intrinsic parameters, the proposed method adopts the elliptical stripes located on the parallel planes as a medium to calibrate BSVS online. In comparison with the common calibration methods, the proposed method avoids utilizing high-accuracy target with certain-sized feature points. Therefore, the proposed method is not only easy to implement but is a realistic method for the calibration of BSVS with optical filter. Changing the size of elliptical curves projected on the target solves the difficulty of applying the proposed method in different fields of view and distances. Simulative and physical experiments are conducted to validate the efficiency of the proposed method. When the field of view is approximately 400 mm × 300 mm, the proposed method can reach a calibration accuracy of 0.03 mm, which is comparable with that of Zhang's method.

摘要

大多数现有的双目立体视觉传感器(BSVS)校准方法依赖于带有特征点的高精度靶标,这种靶标制造困难且成本高昂。在复杂光照条件下,会使用光学滤波器用于双目立体视觉传感器,但这会影响成像质量。因此,在这种复杂条件下,使用带有特定尺寸特征点的高精度靶标进行校准是不可行的。为了解决这些问题,提出了一种基于未知尺寸椭圆条纹图像的校准方法。在已知内参的情况下,该方法采用位于平行平面上的椭圆条纹作为媒介在线校准双目立体视觉传感器。与常见的校准方法相比,该方法避免了使用带有特定尺寸特征点的高精度靶标。因此,该方法不仅易于实现,而且是一种用于带光学滤波器的双目立体视觉传感器校准的切实可行的方法。通过改变投影在靶标上的椭圆曲线大小,解决了该方法在不同视场和距离应用时的困难。进行了模拟和物理实验来验证该方法的有效性。当视场约为400 mm×300 mm时,该方法可达到0.03 mm的校准精度,与张正友方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe0e/5751521/5750e45f51aa/sensors-17-02873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验