Suppr超能文献

基于双球靶标的双目立体视觉传感器结构参数标定

Structural Parameters Calibration for Binocular Stereo Vision Sensors Using a Double-Sphere Target.

作者信息

Wei Zhenzhong, Zhao Kai

机构信息

Key Laboratory of Precision Opto-mechatronics Technology (Beihang University), Ministry of Education, Beijing 100191, China.

出版信息

Sensors (Basel). 2016 Jul 12;16(7):1074. doi: 10.3390/s16071074.

Abstract

Structural parameter calibration for the binocular stereo vision sensor (BSVS) is an important guarantee for high-precision measurements. We propose a method to calibrate the structural parameters of BSVS based on a double-sphere target. The target, consisting of two identical spheres with a known fixed distance, is freely placed in different positions and orientations. Any three non-collinear sphere centres determine a spatial plane whose normal vector under the two camera-coordinate-frames is obtained by means of an intermediate parallel plane calculated by the image points of sphere centres and the depth-scale factors. Hence, the rotation matrix R is solved. The translation vector T is determined using a linear method derived from the epipolar geometry. Furthermore, R and T are refined by nonlinear optimization. We also provide theoretical analysis on the error propagation related to the positional deviation of the sphere image and an approach to mitigate its effect. Computer simulations are conducted to test the performance of the proposed method with respect to the image noise level, target placement times and the depth-scale factor. Experimental results on real data show that the accuracy of measurement is higher than 0.9‰, with a distance of 800 mm and a view field of 250 × 200 mm².

摘要

双目立体视觉传感器(BSVS)的结构参数校准是高精度测量的重要保证。我们提出了一种基于双球靶标的双目立体视觉传感器结构参数校准方法。该靶标由两个具有已知固定距离的相同球体组成,可自由放置在不同位置和方向。任意三个不共线的球心确定一个空间平面,通过由球心图像点和深度比例因子计算得到的中间平行平面,获取该平面在两个相机坐标系下的法向量,从而求解旋转矩阵R。利用从极线几何推导的线性方法确定平移向量T。此外,通过非线性优化对R和T进行细化。我们还对与球体图像位置偏差相关的误差传播进行了理论分析,并提出了减轻其影响的方法。进行了计算机模拟,以测试所提方法在图像噪声水平、靶标放置次数和深度比例因子方面的性能。实际数据的实验结果表明,在距离为800mm、视场为250×200mm²的情况下,测量精度高于0.9‰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13aa/4970120/0ef104016b1d/sensors-16-01074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验