Zauleck Julius P P, de Vivie-Riedle Regina
Department Chemie, Ludwig-Maximilians-Universität München , D-81377 München, Germany.
J Chem Theory Comput. 2018 Jan 9;14(1):55-62. doi: 10.1021/acs.jctc.7b01045. Epub 2017 Dec 27.
A challenge for molecular quantum dynamics (QD) calculations is the curse of dimensionality with respect to the nuclear degrees of freedom. A common approach that works especially well for fast reactive processes is to reduce the dimensionality of the system to a few most relevant coordinates. Identifying these can become a very difficult task, because they often are highly unintuitive. We present a machine learning approach that utilizes an autoencoder that is trained to find a low-dimensional representation of a set of molecular configurations. These configurations are generated by trajectory calculations performed on the reactive molecular systems of interest. The resulting low-dimensional representation can be used to generate a potential energy surface grid in the desired subspace. Using the G-matrix formalism to calculate the kinetic energy operator, QD calculations can be carried out on this grid. In addition to step-by-step instructions for the grid construction, we present the application to a test system.
分子量子动力学(QD)计算面临的一个挑战是核自由度方面的维度灾难。对于快速反应过程特别有效的一种常见方法是将系统的维度降低到几个最相关的坐标。识别这些坐标可能成为一项非常困难的任务,因为它们通常非常不直观。我们提出了一种机器学习方法,该方法利用一个自动编码器,该自动编码器经过训练以找到一组分子构型的低维表示。这些构型是通过对感兴趣的反应性分子系统进行轨迹计算生成的。所得的低维表示可用于在所需子空间中生成势能面网格。使用G矩阵形式来计算动能算符,可以在这个网格上进行QD计算。除了网格构建的逐步说明外,我们还展示了该方法在一个测试系统上的应用。