Suppr超能文献

政府干预减少人类抗生素使用的政策:系统评价和荟萃分析的方案。

Government policy interventions to reduce human antimicrobial use: protocol for a systematic review and meta-analysis.

机构信息

School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.

Global Strategy Lab, Dahdaleh Institute for Global Health Research, Faculty of Health and Osgoode Hall Law School, York University, Ottawa, ON, Canada.

出版信息

Syst Rev. 2017 Dec 13;6(1):256. doi: 10.1186/s13643-017-0640-2.

Abstract

BACKGROUND

Antimicrobial resistance (AMR) is a recognized threat to global public health. Increasing AMR and a dry pipeline of novel antimicrobial drugs have put AMR in the international spotlight. One strategy to combat AMR is to reduce antimicrobial drug consumption. Governments around the world have been experimenting with different policy interventions, such as regulating where antimicrobials can be sold, restricting the use of last-resort antimicrobials, funding AMR stewardship programs, and launching public awareness campaigns. To inform future action, governments should have access to synthesized data on the effectiveness of large-scale AMR interventions. This planned systematic review will (1) identify and describe previously evaluated government policy interventions to reduce human antimicrobial use and (2) estimate the effectiveness of these different strategies.

METHODS

An electronic search strategy has been developed in consultation with two research librarians. Seven databases (MEDLINE, CINAHL, EMBASE, CENTRAL, PAIS Index, Web of Science, and PubMed excluding MEDLINE) will be searched, and additional studies will be identified using several gray literature search strategies. To be included, a study must (1) clearly describe the government policy and (2) use a rigorous design to quantitatively measure the impact of the policy on human antibiotic use. The intervention of interest is any policy intervention enacted by a government or government agency in any country to change human antimicrobial use. Two independent reviewers will screen for eligibility using criteria defined a priori. Data will be extracted with Covidence software using a customized extraction form. If sufficient data exists, a meta-analysis by intervention type will be conducted as part of the effectiveness review. However, if there are too few studies or if the interventions are too heterogeneous, data will be tabulated and a narrative synthesis strategy will be used.

DISCUSSION

This evidence synthesis is intended for use by policymakers, public health practitioners, and researchers to inform future government policies aiming to address antimicrobial resistance. This review will also identify gaps in the evidence about the effectiveness of different policy interventions to inform future research priorities.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO CRD42017067514 .

摘要

背景

抗菌药物耐药性(AMR)是对全球公共卫生的公认威胁。AMR 的不断增加和新型抗菌药物研发的枯竭,使 AMR 成为国际关注的焦点。应对 AMR 的策略之一是减少抗菌药物的使用。世界各国政府一直在尝试不同的政策干预措施,例如规范抗菌药物的销售地点、限制最后手段抗菌药物的使用、为 AMR 管理计划提供资金以及开展公众意识宣传活动。为了为未来的行动提供信息,政府应该能够获得关于大规模 AMR 干预措施有效性的综合数据。这项计划中的系统评价将:(1)确定并描述以前评估过的减少人类抗菌药物使用的政府政策干预措施;(2)估计这些不同策略的有效性。

方法

已与两名研究图书馆员协商制定了电子搜索策略。将检索七个数据库(MEDLINE、CINAHL、EMBASE、CENTRAL、PAIS Index、Web of Science 和 PubMed 不包括 MEDLINE),并使用几种灰色文献搜索策略来确定其他研究。要纳入的研究必须:(1)清楚地描述政府政策;(2)使用严格的设计来定量衡量政策对人类抗生素使用的影响。干预措施是指政府或政府机构在任何国家为改变人类抗菌药物使用而采取的任何政策干预措施。两名独立的审查员将根据事先定义的标准进行资格筛选。使用 Covidence 软件和定制的提取表提取数据。如果存在足够的数据,将按干预类型进行荟萃分析,作为有效性审查的一部分。但是,如果研究数量太少或干预措施差异太大,则将对数据进行制表,并使用叙述性综合策略。

讨论

本证据综合旨在为政策制定者、公共卫生从业人员和研究人员提供信息,以制定未来旨在解决抗菌药物耐药性的政府政策。本综述还将确定不同政策干预措施有效性方面的证据差距,为未来的研究重点提供信息。

系统评价注册

PROSPERO CRD42017067514 。

相似文献

2
Government policy interventions to reduce human antimicrobial use: A systematic review and evidence map.
PLoS Med. 2019 Jun 11;16(6):e1002819. doi: 10.1371/journal.pmed.1002819. eCollection 2019 Jun.
8
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
A systematic literature review of economic evaluation studies of interventions impacting antimicrobial resistance.
Antimicrob Resist Infect Control. 2023 Jul 13;12(1):69. doi: 10.1186/s13756-023-01265-5.

引用本文的文献

1
Carbapenem-Resistant Bacteremia, through a Six-Year Infection Control Program in a Hospital.
Microorganisms. 2023 May 17;11(5):1315. doi: 10.3390/microorganisms11051315.
2
How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges.
Int J Environ Res Public Health. 2023 Jan 17;20(3):1681. doi: 10.3390/ijerph20031681.
6
Governing the Global Antimicrobial Commons: Introduction to Special Issue.
Health Care Anal. 2023 Mar;31(1):1-8. doi: 10.1007/s10728-019-00388-4.

本文引用的文献

1
Advancing the Right to Health-The Vital Role of Law.
Am J Public Health. 2017 Nov;107(11):1755-1756. doi: 10.2105/AJPH.2017.304077.
2
Interventions to improve antibiotic prescribing practices for hospital inpatients.
Cochrane Database Syst Rev. 2017 Feb 9;2(2):CD003543. doi: 10.1002/14651858.CD003543.pub4.
4
Population-level interventions in government jurisdictions for dietary sodium reduction.
Cochrane Database Syst Rev. 2016 Sep 16;9(9):CD010166. doi: 10.1002/14651858.CD010166.pub2.
5
De-duplication of database search results for systematic reviews in EndNote.
J Med Libr Assoc. 2016 Jul;104(3):240-3. doi: 10.3163/1536-5050.104.3.014.
6
PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement.
J Clin Epidemiol. 2016 Jul;75:40-6. doi: 10.1016/j.jclinepi.2016.01.021. Epub 2016 Mar 19.
7
Strategies for achieving global collective action on antimicrobial resistance.
Bull World Health Organ. 2015 Dec 1;93(12):867-76. doi: 10.2471/BLT.15.153171. Epub 2015 Oct 13.
8
Understanding the mechanisms and drivers of antimicrobial resistance.
Lancet. 2016 Jan 9;387(10014):176-87. doi: 10.1016/S0140-6736(15)00473-0. Epub 2015 Nov 18.
10
The Impact of Restricting Over-the-Counter Sales of Antimicrobial Drugs: Preliminary Analysis of National Data.
Medicine (Baltimore). 2015 Sep;94(38):e1605. doi: 10.1097/MD.0000000000001605.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验