Suppr超能文献

生态适应的遗传结构:鳞翅目作物害虫 Chloridea virescens 对宿主植物使用的种内变异。

The genetic architecture of ecological adaptation: intraspecific variation in host plant use by the lepidopteran crop pest Chloridea virescens.

机构信息

The Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, NY, 10024, USA.

Department of Entomology and Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, 27607, USA.

出版信息

Heredity (Edinb). 2018 Mar;120(3):234-250. doi: 10.1038/s41437-017-0016-3. Epub 2017 Dec 14.

Abstract

Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.

摘要

生态重要性状的种内变异是达尔文自然选择进化理论的基石。这种变异的进化和维持取决于遗传结构,而遗传结构又决定了对自然选择的反应。一些模型表明,具有复杂结构的性状比具有简单结构的性状更不可能对选择产生反应,但在这些性状中已经观察到了快速的分化。鳞翅目天蛾亚科的寄主植物利用同时具有进化不稳定性和遗传复杂性,这表明在该类群中,结构可能不会限制生态适应。在这里,我们研究了广泛取食多种植物的一般性食草昆虫 Chloridea virescens 对一种新的寄主植物 Physalis angulata(茄科)的选择反应。P. angulata 是 Chloridea subflexa 的首选寄主,Chloridea subflexa 是 Physalis 属的一个狭窄的专食者。在之前的实验中,我们发现 Chloridea subflexa 在 P. angulata 上的表现取决于分布在整个基因组中的许多小效应的位点,但一般性食草动物是否会采用 P. angulata 涉及到同样的结构尚不清楚。在这里,我们报告了 C. virescens 在 P. angulata 上的表现对选择的快速反应,并确定了种内变异的遗传结构在涉及的 QTL 的数量、分布和效应大小方面与种间差异的遗传结构非常相似。我们讨论了遗传结构对天蛾类昆虫应对不断变化的生态选择压力的能力的影响。

相似文献

2
The genetic architecture of a complex ecological trait: host plant use in the specialist moth, Heliothis subflexa.
Evolution. 2012 Nov;66(11):3336-51. doi: 10.1111/j.1558-5646.2012.01712.x. Epub 2012 Jul 12.
3
Behavioral adaptations increase the value of enemy-free space for Heliothis subflexa, a specialist herbivore.
Evolution. 2002 Apr;56(4):679-89. doi: 10.1111/j.0014-3820.2002.tb01379.x.
4
Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa.
Mol Ecol. 2011 Jul;20(13):2676-92. doi: 10.1111/j.1365-294X.2011.05129.x. Epub 2011 May 26.
6
7
Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant?
J Econ Entomol. 2014 Jun;107(3):881-96. doi: 10.1603/ec14036.
8
Validation of reference-assisted assembly using existing and novel Heliothine genomes.
Genomics. 2022 Sep;114(5):110441. doi: 10.1016/j.ygeno.2022.110441. Epub 2022 Aug 3.

引用本文的文献

1
Host association, environment, and geography underlie genomic differentiation in a major forest pest.
Evol Appl. 2022 Sep 23;15(11):1749-1765. doi: 10.1111/eva.13466. eCollection 2022 Nov.
2
Evolutionary and ecological perspectives on the wheat phenotype.
Proc Biol Sci. 2021 Sep 8;288(1958):20211259. doi: 10.1098/rspb.2021.1259.
3
Response to selection for parasitism of a suboptimal, low-preference host in an aphid parasitoid.
Evol Appl. 2021 Jun 21;14(8):2012-2024. doi: 10.1111/eva.13254. eCollection 2021 Aug.

本文引用的文献

2
Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing.
Nat Genet. 2016 Aug;48(8):912-8. doi: 10.1038/ng.3595. Epub 2016 Jul 4.
4
Can Population Genetics Adapt to Rapid Evolution?
Trends Genet. 2016 Jul;32(7):408-418. doi: 10.1016/j.tig.2016.04.005. Epub 2016 May 13.
5
Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.
Mol Ecol. 2015 Oct;24(20):5186-99. doi: 10.1111/mec.13388. Epub 2015 Oct 12.
7
The global distribution of diet breadth in insect herbivores.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):442-7. doi: 10.1073/pnas.1423042112. Epub 2014 Dec 29.
8
Convergent genetic architecture underlies social organization in ants.
Curr Biol. 2014 Nov 17;24(22):2728-32. doi: 10.1016/j.cub.2014.09.071. Epub 2014 Oct 23.
9
Supergenes and their role in evolution.
Heredity (Edinb). 2014 Jul;113(1):1-8. doi: 10.1038/hdy.2014.20. Epub 2014 Mar 19.
10
Rapid evolution of quantitative traits: theoretical perspectives.
Evol Appl. 2014 Jan;7(1):169-91. doi: 10.1111/eva.12127. Epub 2013 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验