Shinohara Ayaka, Hanaoka Hirofumi, Sakashita Tetsuya, Sato Tatsuhiko, Yamaguchi Aiko, Ishioka Noriko S, Tsushima Yoshito
Department of Heavy Ion Beam Medical Physics and Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, 371-8511, Japan.
Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, 371-8511, Japan.
Ann Nucl Med. 2018 Feb;32(2):114-122. doi: 10.1007/s12149-017-1225-9. Epub 2017 Dec 13.
Radionuclide therapy with low-energy auger electron emitters may provide high antitumor efficacy while keeping the toxicity to normal organs low. Here we evaluated the usefulness of an auger electron emitter and compared it with that of a beta emitter for tumor treatment in in vitro models and conducted a dosimetry simulation using radioiodine-labeled metaiodobenzylguanidine (MIBG) as a model compound.
We evaluated the cellular uptake of I-MIBG and the therapeutic effects of I- and I-MIBG in 2D and 3D PC-12 cell culture models. We used a Monte Carlo simulation code (PHITS) to calculate the absorbed radiation dose of I or I in computer simulation models for 2D and 3D cell cultures. In the dosimetry calculation for the 3D model, several distribution patterns of radionuclide were applied.
A higher cumulative dose was observed in the 3D model due to the prolonged retention of MIBG compared to the 2D model. However, I-MIBG showed a greater therapeutic effect in the 2D model compared to the 3D model (respective EC values in the 2D and 3D models: 86.9 and 303.9 MBq/cell), whereas I-MIBG showed the opposite result (respective EC values in the 2D and 3D models: 49.4 and 30.2 MBq/cell). The therapeutic effect of I-MIBG was lower than that of I-MIBG in both models, but the radionuclide-derived difference was smaller in the 2D model. The dosimetry simulation with PHITS revealed the influence of the radiation quality, the crossfire effect, radionuclide distribution, and tumor shape on the absorbed dose. Application of the heterogeneous distribution series dramatically changed the radiation dose distribution of I-MIBG, and mitigated the difference between the estimated and measured therapeutic effects of I-MIBG.
The therapeutic effect of I-MIBG was comparable to that of I-MIBG in the 2D model, but the efficacy was inferior to that of I-MIBG in the 3D model, since the crossfire effect is negligible and the homogeneous distribution of radionuclides was insufficient. Thus, auger electrons would be suitable for treating small-sized tumors. The design of radiopharmaceuticals with auger electron emitters requires particularly careful consideration of achieving a homogeneous distribution of the compound in the tumor.
使用低能俄歇电子发射体进行放射性核素治疗可能在对正常器官毒性较低的同时提供高抗肿瘤疗效。在此,我们评估了一种俄歇电子发射体的有效性,并在体外模型中将其与β发射体用于肿瘤治疗的有效性进行比较,且使用放射性碘标记的间碘苄胍(MIBG)作为模型化合物进行了剂量学模拟。
我们在二维和三维PC - 12细胞培养模型中评估了¹²⁵I - MIBG的细胞摄取以及¹²³I - MIBG和¹²⁵I - MIBG的治疗效果。我们使用蒙特卡罗模拟代码(PHITS)在二维和三维细胞培养的计算机模拟模型中计算¹²³I或¹²⁵I的吸收辐射剂量。在三维模型的剂量学计算中,应用了几种放射性核素的分布模式。
与二维模型相比,由于MIBG保留时间延长,在三维模型中观察到更高的累积剂量。然而,与三维模型相比,¹²³I - MIBG在二维模型中显示出更大的治疗效果(二维和三维模型中的各自EC值:86.9和303.9 MBq/细胞),而¹²⁵I - MIBG则显示出相反的结果(二维和三维模型中的各自EC值:49.4和30.2 MBq/细胞)。在两个模型中,¹²⁵I - MIBG的治疗效果均低于¹²³I - MIBG,但放射性核素衍生的差异在二维模型中较小。使用PHITS进行的剂量学模拟揭示了辐射质量、交叉火力效应、放射性核素分布和肿瘤形状对吸收剂量的影响。应用非均匀分布系列显著改变了¹²⁵I - MIBG的辐射剂量分布,并减轻了¹²⁵I - MIBG估计治疗效果与实测治疗效果之间的差异。
在二维模型中,¹²⁵I - MIBG的治疗效果与¹²³I - MIBG相当,但在三维模型中疗效低于¹²³I - MIBG,因为交叉火力效应可忽略不计且放射性核素的均匀分布不足。因此,俄歇电子适用于治疗小型肿瘤。设计具有俄歇电子发射体的放射性药物需要特别仔细地考虑实现化合物在肿瘤中的均匀分布。