Suppr超能文献

全基因组关联研究(GWAS)后区域测序中联合数量性状依赖型和基因型依赖型抽样的两阶段设计

Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing.

作者信息

Espin-Garcia Osvaldo, Craiu Radu V, Bull Shelley B

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.

出版信息

Genet Epidemiol. 2018 Feb;42(1):104-116. doi: 10.1002/gepi.22099. Epub 2017 Dec 14.

Abstract

We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure.

摘要

当对整个队列进行区域测序的成本过高时,我们评估两阶段设计以跟进全基因组关联研究(GWAS)的结果。我们在为GWAS后推断量身定制的半参数最大似然公式下,开发了基于期望最大化的新型推断方法。在推断序列变异与正态分布的数量性状(QT)之间的关联时,GWAS单核苷酸多态性(SNP)用作替代协变量。我们通过模拟评估检验有效性,并量化在替代样本分配下联合QT-SNP依赖抽样和分析的效率和功效。与基于边际QT或SNP的分配相比,在SNP基因型和极端QT分层上实现平衡的联合分配可显著提高功效。我们使用收缩压测序研究的数据说明了所提出的方法,并评估了样本分配对抽样变异的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验