Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S Cass Avenue, Lemont, Illinois 60439, United States.
Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Duisburg 47048, Germany.
Nano Lett. 2018 Jan 10;18(1):336-346. doi: 10.1021/acs.nanolett.7b04193. Epub 2017 Dec 20.
Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li, K, Mg and Al storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.
室温钠离子电池由于钠的天然丰度而在储能方面引起了越来越多的关注。然而,开发具有良好性能的多功能电极材料仍然是一个巨大的挑战,这需要智能结构设计和良好的机械理解。在此,我们报道了一种通用且可扩展的方法,通过静电相互作用诱导自组装合成三维(3D)氧化钛-石墨烯杂化材料。同步辐射 X 射线探针、透射电子显微镜和计算建模表明,通过相对较强的范德华力,氧化钛和石墨烯之间的强相互作用不仅有利于大块钠离子的嵌入,而且增强了界面钠离子的存储。因此,氧化钛-石墨烯杂化材料表现出出色的长期循环稳定性,可达 5000 次循环,超高倍率能力可达 20C 用于钠离子存储。此外,密度泛函理论计算表明,界面锂、钾、镁和铝的存储也可以得到增强。所提出的通用策略为先进电池系统创造多功能材料开辟了新途径。