Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, P. R. China.
Nanoscale. 2018 Jun 14;10(23):11165-11175. doi: 10.1039/c8nr02620c.
Sodium-ion batteries and capacitors are considered as low-cost energy storage devices, compared to Li-ion counterparts. However, most anodes for sodium-ion devices show sluggish kinetics and poor structural stability caused by the large radius (1.02 Å) of Na+. One candidate anode is MoS2, a 2D atomic layered material with a large interlayer spacing of 6.2 Å, that can take up and release Na+via two working principles: a two-electron intercalation process and a four-electron conversion reaction. Herein, we report a facile method to synthesize a MoS2-amorphous carbon (MoS2-AC) nanocomposite and further study the effect of the two working principles on the structure, interphase, and charge storage properties of MoS2-AC. The two-electron intercalation reaction enables the MoS2-AC electrode to have a higher rate capability and superior stability than that via the four-electron Na+ conversion reaction. This favorable Na+ charge storage performance of MoS2-AC via the two-electron intercalation process is attributed to its pseudocapacitive behavior, a stable solid electrolyte interphase and robust stability of the structure, which enables us to fabricate a sodium-ion capacitor that can deliver high energy density at a high rate. This work underscores the potential importance of realizing fast Na+ charge storage via an intercalation process as a strategy for the fabrication of high-performance sodium-ion capacitors and batteries.
钠离子电池和电容器被认为是比锂离子电池更具成本效益的储能设备。然而,大多数钠离子器件的阳极由于 Na+的大半径(1.02 Å)而表现出缓慢的动力学和较差的结构稳定性。一种候选阳极是 MoS2,这是一种具有 6.2 Å 大层间间距的二维原子层材料,可以通过两种工作原理吸收和释放 Na+:双电子嵌入过程和四电子转化反应。在此,我们报告了一种简便的方法来合成 MoS2-无定形碳(MoS2-AC)纳米复合材料,并进一步研究了这两种工作原理对 MoS2-AC 的结构、相间和电荷存储性能的影响。双电子嵌入反应使 MoS2-AC 电极具有比四电子 Na+转化反应更高的倍率性能和更好的稳定性。MoS2-AC 通过双电子嵌入过程实现的这种有利的 Na+电荷存储性能归因于其赝电容行为、稳定的固体电解质相间和结构的强稳定性,这使我们能够制造出一种钠离子电容器,该电容器可以在高倍率下提供高能量密度。这项工作强调了通过嵌入过程实现快速 Na+电荷存储的潜在重要性,这是制造高性能钠离子电容器和电池的一种策略。