Suppr超能文献

自动化追踪技术用于监测猪的行为变化,以评估其健康和福利状况。

Automated tracking to measure behavioural changes in pigs for health and welfare monitoring.

机构信息

Open Lab, School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

出版信息

Sci Rep. 2017 Dec 14;7(1):17582. doi: 10.1038/s41598-017-17451-6.

Abstract

Since animals express their internal state through behaviour, changes in said behaviour may be used to detect early signs of problems, such as in animal health. Continuous observation of livestock by farm staff is impractical in a commercial setting to the degree required to detect behavioural changes relevant for early intervention. An automated monitoring system is developed; it automatically tracks pig movement with depth video cameras, and automatically measures standing, feeding, drinking, and locomotor activities from 3D trajectories. Predictions of standing, feeding, and drinking were validated, but not locomotor activities. An artificial, disruptive challenge; i.e., introduction of a novel object, is used to cause reproducible behavioural changes to enable development of a system to detect the changes automatically. Validation of the automated monitoring system with the controlled challenge study provides a reproducible framework for further development of robust early warning systems for pigs. The automated system is practical in commercial settings because it provides continuous monitoring of multiple behaviours, with metrics of behaviours that may be considered more intuitive and have diagnostic validity. The method has the potential to transform how livestock are monitored, directly impact their health and welfare, and address issues in livestock farming, such as antimicrobial use.

摘要

由于动物通过行为来表达其内部状态,因此可以利用行为变化来检测早期问题,例如在动物健康方面。在商业环境中,农场工作人员对牲畜进行持续观察是不切实际的,无法达到检测与早期干预相关的行为变化所需的程度。我们开发了一种自动化监测系统;它使用深度摄像机自动跟踪猪的运动,并自动从 3D 轨迹测量站立、进食、饮水和运动活动。站立、进食和饮水的预测得到了验证,但运动活动没有得到验证。使用人为的、干扰性的挑战,即引入新的物体,来引起可重复的行为变化,从而开发出一种自动检测这些变化的系统。通过受控挑战研究对自动化监测系统进行验证,为进一步开发用于猪的稳健早期预警系统提供了可重复的框架。由于该自动化系统可以持续监测多种行为,并且可以提供更直观和具有诊断有效性的行为指标,因此在商业环境中具有实用性。该方法有可能改变对牲畜的监测方式,直接影响其健康和福利,并解决畜牧业中的问题,例如抗生素的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7002/5730557/1d651a40f46f/41598_2017_17451_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验