Kato Koichi, Satoh Tadashi
Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 465-8603, Japan.
Biophys Rev. 2018 Apr;10(2):597-604. doi: 10.1007/s12551-017-0381-4. Epub 2017 Dec 14.
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
生物系统中的分子组织包括精心编排的过程,涉及生物分子亚稳态复合物的形成。蛋白酶体的形成就是一个例子,它是最大且最复杂的生物超分子复合物之一。这种生物分子机制由大约70个亚基组成,包括结构同源但功能不同的亚基,从而发挥多种蛋白水解功能。在真核生物中,蛋白酶体的形成是非自主的,并且由组装伴侣辅助,这些组装伴侣与组装中间体短暂结合,充当分子媒人以及蛋白酶体亚基正确组装的检查点。积累的数据还表明,真核生物蛋白酶体的形成涉及“先拆解再构建”机制。然而,与真核生物蛋白酶体亚基不同,古细菌亚基的结构差异很小,能自发组装成功能机制。尽管如此,古细菌基因组编码真核生物蛋白酶体组装伴侣的同源物。最近对这些蛋白质的结构和功能研究增进了我们对蛋白酶体生物发生所涉及分子机制进化的理解。反过来,这一知识为使用蛋白质工程方法设计分子机制以及从头合成人工分子系统提供了指导原则。