Suppr超能文献

人类杓会厌襞和室襞组织在发声频率下的粘弹性特性。

Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.

作者信息

Kimura Miwako, Chan Roger W

机构信息

Department of Otolaryngology, University of Tokyo Hospital, Tokyo, Japan.

Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A.

出版信息

Laryngoscope. 2018 Aug;128(8):E296-E301. doi: 10.1002/lary.27049. Epub 2017 Dec 15.

Abstract

OBJECTIVE

The purpose of this study was to quantify the viscoelastic shear properties of the human ventricular fold (or false vocal fold) mucosa and aryepiglottic fold mucosa at frequencies of phonation.

METHODS

Linear viscoelastic shear properties of the mucosa of false vocal fold and aryepiglottic fold specimens from seven cadaveric subjects were determined as functions of frequency (5-250 Hz) and compared to those of the true vocal fold cover. Measurements of elastic shear modulus (G') and dynamic viscosity (η') were made with a controlled-strain simple-shear rheometer. Linear least-squares regression was conducted to curve-fit log G' and log η' versus log frequency, and statistical analysis was performed with one-way analysis of variance.

RESULTS

All specimens showed similar frequency dependence of the viscoelastic functions G' and η', with G' gradually increasing with frequency and η' monotonically decreasing with frequency. The magnitudes of G' and η' of the false fold mucosa were generally higher than those of the aryepiglottic fold mucosa and true vocal fold cover, but there were no significant differences in G' and η' among the false fold, aryepiglottic fold, and true vocal fold.

CONCLUSION

The false vocal fold and aryepiglottic fold mucosa showed similar frequency dependence and a similar range of tissue viscoelastic behavior as the true vocal fold. These preliminary findings suggested that such tissues could become candidates for the replacement of the true vocal fold lamina propria in patients with significant tissue loss and deficiencies, for those requiring laryngeal reconstruction following partial laryngectomy or airway reconstruction.

LEVEL OF EVIDENCE

NA. Laryngoscope, E296-E301, 2018.

摘要

目的

本研究旨在量化人类室襞(或假声带)黏膜和声襞皱襞黏膜在发声频率下的粘弹性剪切特性。

方法

测定了7具尸体标本的假声带黏膜和声襞皱襞黏膜的线性粘弹性剪切特性随频率(5 - 250Hz)的变化,并与真声带覆盖层的特性进行比较。使用控制应变简单剪切流变仪测量弹性剪切模量(G')和动态粘度(η')。进行线性最小二乘回归以对log G'和log η'与log频率进行曲线拟合,并采用单因素方差分析进行统计分析。

结果

所有标本的粘弹性函数G'和η'均表现出相似的频率依赖性,G'随频率逐渐增加,η'随频率单调降低。假声带黏膜的G'和η'值通常高于声襞皱襞黏膜和真声带覆盖层,但假声带、声襞皱襞和真声带之间的G'和η'无显著差异。

结论

假声带和声襞皱襞黏膜与真声带表现出相似的频率依赖性和相似的组织粘弹性行为范围。这些初步研究结果表明,对于组织大量缺失和缺损的患者,以及部分喉切除术后需要喉重建或气道重建的患者,这些组织可能成为替代真声带固有层的候选材料。

证据水平

无。《喉镜》,E296 - E301,2018年。

相似文献

1
Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
Laryngoscope. 2018 Aug;128(8):E296-E301. doi: 10.1002/lary.27049. Epub 2017 Dec 15.
2
Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies.
Laryngoscope. 2010 Apr;120(4):764-8. doi: 10.1002/lary.20816.
3
4
Rheometric properties of canine vocal fold tissues: variation with anatomic location.
Auris Nasus Larynx. 2011 Jun;38(3):367-72. doi: 10.1016/j.anl.2010.09.006. Epub 2010 Oct 28.
7
Ovine Vocal Fold Tissue Fatigue Response to Accumulated, Large-Amplitude Vibration Exposure at Phonatory Frequencies.
J Speech Lang Hear Res. 2019 Nov 26;62(12):4291-4299. doi: 10.1044/2019_JSLHR-S-19-0181. Print 2019 Dec 18.
8
9
Biomechanical effects of hydration in vocal fold tissues.
Otolaryngol Head Neck Surg. 2002 May;126(5):528-37. doi: 10.1067/mhn.2002.124936.
10
The importance of hyaluronic acid in vocal fold biomechanics.
Otolaryngol Head Neck Surg. 2001 Jun;124(6):607-14. doi: 10.1177/019459980112400602.

引用本文的文献

1
Acoustic, aerodynamic, and vibrational effects of ventricular folds adduction in an ex vivo experiment.
Laryngoscope Investig Otolaryngol. 2024 Sep 9;9(5):e70008. doi: 10.1002/lio2.70008. eCollection 2024 Oct.

本文引用的文献

1
Comparison of Videostroboscopy and High-speed Videoendoscopy in Evaluation of Supraglottic Phonation.
Ann Otol Rhinol Laryngol. 2016 Oct;125(10):829-37. doi: 10.1177/0003489416656205. Epub 2016 Jul 12.
2
Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.
Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64:444-453. doi: 10.1016/j.msec.2016.04.018. Epub 2016 Apr 8.
4
Effect of resection depth of early glottic cancer on vocal outcome: an optimized finite element simulation.
Laryngoscope. 2015 Aug;125(8):1892-9. doi: 10.1002/lary.25267. Epub 2015 May 22.
5
Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue.
J Biomech. 2014 Mar 21;47(5):1173-9. doi: 10.1016/j.jbiomech.2013.11.034. Epub 2013 Dec 1.
6
Functional endoscopic analysis of beatbox performers.
J Voice. 2014 May;28(3):328-31. doi: 10.1016/j.jvoice.2013.11.007. Epub 2013 Dec 22.
7
Muscular anatomy of the human ventricular folds.
Ann Otol Rhinol Laryngol. 2013 Sep;122(9):561-7. doi: 10.1177/000348941312200905.
8
The anisotropic nature of the human vocal fold: an ex vivo study.
Eur Arch Otorhinolaryngol. 2013 May;270(6):1885-95. doi: 10.1007/s00405-013-2428-x. Epub 2013 Mar 28.
9
Measurement of vocal folds elastic properties for continuum modeling.
J Voice. 2012 Nov;26(6):816.e21-9. doi: 10.1016/j.jvoice.2012.04.010. Epub 2012 Aug 24.
10
High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering.
Tissue Eng Part A. 2012 Oct;18(19-20):2008-19. doi: 10.1089/ten.TEA.2012.0023. Epub 2012 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验