Suppr超能文献

原位碳封装具有 SnO 的垂直 MoS 阵列用于持久高倍率锂存储:主导赝电容行为。

In situ carbon encapsulation of vertical MoS arrays with SnO for durable high rate lithium storage: dominant pseudocapacitive behavior.

机构信息

Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional Magneto-Optical Spectroscopy, Shanghai, China.

出版信息

Nanoscale. 2018 Jan 3;10(2):741-751. doi: 10.1039/c7nr07359c.

Abstract

Improving the conductivity and charge transfer kinetics is favourable for innovation of sustainable energy devices such as metal oxide/sulfide-based electrodes. Herein, with an intercalation pseudocapacitance effect, an in situ polymerization-carbonization process for novel carbon-sealed vertical MoS-SnO anchored on graphene aerogel (C@MoS-SnO@Gr) has enabled excellent rate performance and durability of the anode of lithium ion batteries to be achieved. The integrated carbon layer and graphene matrix provide a bicontinuous conductive network for efficient electron/ion diffusion pathways. The charge transfer kinetics could be enhanced by the synergistic effects between vertical MoS nanosheets and well-dispersed SnO particles. Based on the crystal surface matching, the ameliorated electric contact between MoS and SnO can promote the extraction of Li from LiO and restrain the serious aggregation of LiSn. As a result, the improved reversibility leads to a higher initial coulombic efficiency (ICE) of 80% (0.1 A g current density) compared to that of other materials. In particular, with the dominating surface capacitive process, the C@MoS-SnO@Gr electrode delivers a stable capacity of 680 mA h g at 2.5 A g for 2000 cycles. Quantitative insight into the origin of the boosted kinetics demonstrated the high pseudocapacitance contribution (above 90%) which leads to the durable high rate Li ion storage.

摘要

提高电导率和电荷转移动力学有利于创新可持续能源器件,如金属氧化物/硫化物基电极。在此,通过插层赝电容效应,我们采用原位聚合碳化法,成功制备了新型碳封垂直 MoS-SnO 锚定在石墨烯气凝胶(C@MoS-SnO@Gr)上,实现了锂离子电池阳极的优异倍率性能和循环稳定性。集成的碳层和石墨烯基质为高效的电子/离子扩散途径提供了双连续导电网络。垂直 MoS 纳米片和分散良好的 SnO 颗粒之间的协同效应可以增强电荷转移动力学。基于晶体表面匹配,改善的 MoS 和 SnO 之间的电接触可以促进 Li 从 LiO 中的提取,并抑制 LiSn 的严重聚集。结果,提高了可逆性,使得初始库仑效率(ICE)高达 80%(在 0.1 A g 的电流密度下),优于其他材料。特别是,在主导的表面电容过程中,C@MoS-SnO@Gr 电极在 2.5 A g 的电流密度下可稳定循环 2000 次,容量高达 680 mA h g。对增强动力学起源的定量分析表明,高赝电容贡献(超过 90%)是实现耐用的高倍率锂离子存储的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验