Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany.
Nat Commun. 2017 Dec 15;8(1):2144. doi: 10.1038/s41467-017-01553-w.
Increasing the operating temperatures of single-molecule magnets-molecules that can retain magnetic polarization in the absence of an applied field-has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Herein, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp) capping ligands with strong magnetic exchange coupling provided by an N radical bridging ligand results in a series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(CpTb)(μ-[Formula: see text])].
提高单分子磁体(在没有外加磁场的情况下能保持磁极化的分子)的工作温度具有在信息存储和计算方面的潜在应用,也可能为新型块状磁铁的开发提供信息。这些目标的进展依赖于合成化学的发展,从而增强磁矩反转的热势垒,同时抑制替代弛豫过程。在此,我们表明,将由四甲基环戊二烯基(Cp)封端配体强制产生的轴向各向磁性与由 N 自由基桥联配体提供的强磁交换耦合相结合,导致一系列镧系元素配合物表现出异常大的磁滞回线,这些回线一直持续到高温。重要的是,降低金属中心的配位数似乎会增加轴向各向异性,从而产生更大的磁弛豫势垒和 100-s 的磁阻塞温度,高达 20 K,如复合物 [K(crypt-222)][(CpTb)(μ-[公式:见正文])] 中观察到的那样。