Suppr超能文献

核壳结构CdSe/ZnS量子点薄膜光激发发光的可逆电化学控制

Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film.

作者信息

Li Bo, Lu Meilin, Liu Weilong, Zhu Xiaojun, He Xing, Yang Yanqiang, Yang Qingxin

机构信息

Department of Physics, Harbin Institute of Technology, Harbin, 150001, China.

出版信息

Nanoscale Res Lett. 2017 Dec 16;12(1):626. doi: 10.1186/s11671-017-2398-9.

Abstract

Semiconductor quantum dots (QDs) are widely used in light-emitting diodes and solar cells. Electrochemical modulation is a good way to understand the electrical and optical properties of QDs. In this work, the effects of electrochemical control on photoluminescence (PL) spectra in core/shell CdSe/ZnS QD films are studied. The results show different spectral responses for surface emission and core emission when a negative electrochemical potential is applied: the core emission is redshifted while the surface emission is blueshifted. The former is attributed to the electrostatic expansion of the excitonic wave function, due to the asymmetric distribution of adsorbed cations on the surface of the dots. The latter is attributed to the occupation of lower surface states by the injected electrons, i.e., the photoexcited electrons are more likely to be trapped onto higher surface states, leading to a blueshift of the surface emission. Both the spectral shift and the accompanying PL-quenching processes are reversible by resetting the potential.

摘要

半导体量子点(QDs)广泛应用于发光二极管和太阳能电池中。电化学调制是了解量子点电学和光学性质的一种好方法。在这项工作中,研究了电化学控制对核壳型CdSe/ZnS量子点薄膜光致发光(PL)光谱的影响。结果表明,当施加负电化学势时,表面发射和核发射具有不同的光谱响应:核发射发生红移,而表面发射发生蓝移。前者归因于激子波函数的静电扩展,这是由于量子点表面吸附阳离子的不对称分布所致。后者归因于注入电子对较低表面态的占据,即光激发电子更有可能被捕获到较高表面态上,导致表面发射发生蓝移。通过重置电势,光谱位移和伴随的PL猝灭过程都是可逆的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f1e/5732114/8c84b3f6b780/11671_2017_2398_Fig1_HTML.jpg

相似文献

1
Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film.
Nanoscale Res Lett. 2017 Dec 16;12(1):626. doi: 10.1186/s11671-017-2398-9.
3
Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 15;179:201-210. doi: 10.1016/j.saa.2017.02.028. Epub 2017 Feb 16.
4
Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
J Photochem Photobiol B. 2017 May;170:309-313. doi: 10.1016/j.jphotobiol.2017.04.012. Epub 2017 Apr 12.
5
Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
Opt Express. 2016 Jan 25;24(2):A350-7. doi: 10.1364/OE.24.00A350.
6
Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
Luminescence. 2014 Dec;29(8):1095-101. doi: 10.1002/bio.2664. Epub 2014 Jun 5.
7
Luminescence properties and exciton dynamics of core-multi-shell semiconductor quantum dots leading to QLEDs.
Dalton Trans. 2019 Jun 14;48(22):7619-7631. doi: 10.1039/c9dt00989b. Epub 2019 May 9.
9
Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots.
Nanotechnology. 2009 Mar 4;20(9):095401. doi: 10.1088/0957-4484/20/9/095401. Epub 2009 Feb 6.
10
Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films.
Chem Mater. 2019 Oct 22;31(20):8484-8493. doi: 10.1021/acs.chemmater.9b02908. Epub 2019 Sep 24.

引用本文的文献

1
Fluctuations in the Photoluminescence Excitation Spectra of Individual Semiconductor Nanocrystals.
J Phys Chem Lett. 2024 May 9;15(18):4844-4850. doi: 10.1021/acs.jpclett.4c00516. Epub 2024 Apr 29.
2
Interparticle Spacing Effect among Quantum Dots with High-Pressure Regulation.
Nanomaterials (Basel). 2021 Jan 27;11(2):325. doi: 10.3390/nano11020325.

本文引用的文献

1
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Nano Lett. 2015 May 13;15(5):3056-66. doi: 10.1021/acs.nanolett.5b00050. Epub 2015 Apr 14.
2
Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
ACS Nano. 2014 Jul 22;8(7):7288-96. doi: 10.1021/nn5023473. Epub 2014 Jun 18.
3
Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.
ACS Nano. 2014 Jul 22;8(7):7067-77. doi: 10.1021/nn501985e. Epub 2014 Jun 5.
4
Electrochemical charging of CdSe quantum dot films: dependence on void size and counterion proximity.
ACS Nano. 2013 Mar 26;7(3):2500-8. doi: 10.1021/nn3058455. Epub 2013 Feb 18.
7
A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.
ACS Nano. 2011 Mar 22;5(3):2026-35. doi: 10.1021/nn2002689. Epub 2011 Mar 1.
9
Trion decay in colloidal quantum dots.
ACS Nano. 2009 Apr 28;3(4):1011-5. doi: 10.1021/nn9001177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验