Suppr超能文献

Acridine dimers: influence of the intercalating ring and of the linking-chain nature on the equilibrium and kinetic DNA-binding parameters.

作者信息

Markovits J, Garbay-Jaureguiberry C, Roques B P, Le Pecq J B

机构信息

Laboratoire de Pharmacologie Moléculaire, Institut Gustave-Roussy, Villejuif, France.

出版信息

Eur J Biochem. 1989 Mar 15;180(2):359-66. doi: 10.1111/j.1432-1033.1989.tb14656.x.

Abstract

The rigidity of the linking chain of bifunctional intercalators in the ditercalinium series was shown to be critical for antitumor activity. In order to study the influence of the rigidity of the linking chain on the DNA-binding properties of DNA bifunctional intercalators, fluorescent 9-aminoacridine and 2-methoxy-6-chloro-9-aminoacridine analogues with chains of variable rigidity were synthesized. 1H-NMR studies show that the conformation of 9-aminoacridine dimers is almost independent of the nature of the linking chain. A strong self-stacking of the aromatic rings of the 2-methoxy-6-chloro-9-aminoacridine is observed for dimers with flexible chains but not for those with rigid chains. All the dimers having a linking chain long enough to bisintercalate in DNA according to the excluded site model are indeed bisintercalators. The kinetic association constant of all monomers and dimers for poly[d(A-T)].poly[d(A-T)] are in the same range (2-4 x 10(7) M-1 s-1). The large increase of DNA binding affinity observed for the dimers is always associated with the expected decrease of the dissociation rate constant. The effect of chain rigidity and pH on the calf thymus DNA binding of 9-aminoacridine and 2-methoxy-6-chloro-9-aminoacridine dimers is quite different. In the series of 9-aminoacridine the pKa of the dimers remains high and therefore no difference of DNA-binding affinity is observed between pH 5 and 7.4. The rigidity of the linking chain does not significantly alter the DNA-binding affinity. In the 2-methoxy-6-chloro-9-aminoacridine series, the pKa of all dimers became smaller than the physiological pH and a dramatic decrease of DNA-binding affinity is observed when the pH is increased from pH 5 to 7.4. This decrease appears significantly smaller for dimers with rigid chains. A similar dramatic decrease of binding affinity at pH 7.4 is not observed for poly[d(A-T)].poly[d(A-T)]. This factor makes these dimers strongly specific for the alternating polymer at pH 7.4.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验