Manitoba Neurosurgery Laboratory, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
Neurosurgery. 2018 Oct 1;83(4):642-650. doi: 10.1093/neuros/nyx576.
Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision.
To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles.
Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion.
Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times.
We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies.
现代立体定向技术已经发展到可以准确、可重复地到达特定大脑靶点的程度,从而应对神经外科的挑战。神经外科的进步与复杂的技术发展和工程创新相辅相成,如自动化机器人平台。机器人系统提供了灵活性、耐用性、不知疲倦和精度的独特组合。
对机器人在神经外科颅立体定向引导中的集成进行系统评价。具体来说,我们全面分析了过去和现在的一系列机器人技术的优缺点,包括每个系统运动学规格和靶向精度的详细信息。
从几个电子数据库中提取了 1985 年至 2017 年间人类临床应用颅机器人引导立体定向系统的合格文章,重点是立体定向活检程序、立体脑电图和深部脑刺激电极插入。
颅机器人立体定向系统具有串联或并联结构,具有 4 至 7 个自由度,以及基于框架或无框架的注册。机器人辅助的适应症正在多样化,包括立体定向活检、深部脑刺激和立体脑电图电极放置、脑室造口术和消融程序。并发症发生率低,主要为出血。较新的系统受益于提高的靶向精度、术中成像能力、提高的安全性和降低的手术时间。
我们强调了与机器人技术集成到未来神经外科手术相关的新兴未来方向。值得注意的是,向小型化、成本效益、无框架注册以及提高安全性和准确性的趋势是成功的立体定向机器人技术的特征。