Suppr超能文献

一种使用小波去噪算法识别腕部脉搏信号去噪各种因素的有效方法。

An effective method to identify various factors for denoising wrist pulse signal using wavelet denoising algorithm.

作者信息

Garg Nidhi, Ryait Hardeep S, Kumar Amod, Bisht Amandeep

机构信息

I.K. Gujral Punjab Technical University (PTU), Jalandhar, Punjab-144001, India.

Department of Electronics and Communication, University Institute of Engineering and Technology (UIET), Panjab University (PU), Chandigarh-160023, India.

出版信息

Biomed Mater Eng. 2018;29(1):53-65. doi: 10.3233/BME-171712.

Abstract

BACKGROUND

WPS is a non-invasive method to investigate human health. During signal acquisition, noises are also recorded along with WPS.

OBJECTIVE

Clean WPS with high peak signal to noise ratio is a prerequisite before use in disease diagnosis. Wavelet Transform is a commonly used method in the filtration process. Apart from its extensive use, the appropriate factors for wavelet denoising algorithm is not yet clear in WPS application. The presented work gives an effective approach to select various factors for wavelet denoise algorithm. With the appropriate selection of wavelet and factors, it is possible to reduce noise in WPS.

METHODS

In this work, all the factors of wavelet denoising are varied successively. Various evaluation parameters such as MSE, PSNR, PRD and Fit Coefficient are used to find out the performance of the wavelet denoised algorithm at every one step.

RESULTS

The results obtained from computerized WPS illustrates that the presented approach can successfully select the mother wavelet and other factors for wavelet denoise algorithm. The selection of db9 as mother wavelet with sure threshold function and single rescaling function using UWT has been a better option for our database.

CONCLUSION

The empirical results proves that the methodology discussed here could be effective in denoising WPS of any morphological pattern.

摘要

背景

小波包谱(WPS)是一种用于研究人体健康的非侵入性方法。在信号采集过程中,WPS信号会伴随着噪声一同被记录下来。

目的

在将WPS用于疾病诊断之前,获得具有高峰值信噪比的干净WPS信号是一个先决条件。小波变换是滤波过程中常用的方法。除了广泛应用外,在WPS应用中,小波去噪算法的合适参数尚不清楚。本文提出了一种为小波去噪算法选择各种参数的有效方法。通过适当选择小波和参数,可以降低WPS中的噪声。

方法

在这项工作中,小波去噪的所有参数依次变化。使用诸如均方误差(MSE)、峰值信噪比(PSNR)、百分比相对畸变(PRD)和拟合系数等各种评估参数来确定小波去噪算法在每一步的性能。

结果

从计算机化的WPS获得的结果表明,本文提出的方法可以成功地为小波去噪算法选择母小波和其他参数。对于我们的数据库来说,选择db9作为母小波,采用确定阈值函数和使用平稳小波变换(UWT)的单重缩放函数是一个更好的选择。

结论

实验结果证明,本文讨论的方法对于去除任何形态模式的WPS噪声都是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验