Suppr超能文献

生物装置的再利用:一种自下而上设计的相互关联转录级联的模型辅助分析

Re-using biological devices: a model-aided analysis of interconnected transcriptional cascades designed from the bottom-up.

作者信息

Pasotti Lorenzo, Bellato Massimo, Casanova Michela, Zucca Susanna, Cusella De Angelis Maria Gabriella, Magni Paolo

机构信息

Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy.

Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy.

出版信息

J Biol Eng. 2017 Dec 14;11:50. doi: 10.1186/s13036-017-0090-3. eCollection 2017.

Abstract

BACKGROUND

The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden.

METHODS

Here, we analyzed a set of synthetic transcriptional cascades in . We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively.

RESULTS

Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour.

CONCLUSIONS

Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.

摘要

背景

对简化的、临时构建的模型系统进行研究有助于阐明定量表征的生物部件能否在复合电路中有效重复使用,以产生可预测的功能。自下而上设计的合成系统能够通过数学建模支持的合理方法构建复杂的互连设备。然而,这样的过程受到不同的、通常无法建模的不可预测性来源的影响,如细胞负担。

方法

在此,我们分析了一组合成转录级联反应。我们旨在测试简单的希尔函数激活/抑制模型(无负担模型,NBM)和最近提出的一个模型(包括希尔函数和细胞负载对蛋白质表达的调节,即负担模型,BM)的预测能力。为了测试自下而上的方法,将电路集合分为训练集和测试集,分别用于学习单个组件的功能和测试互连电路的预测输出。

结果

在所构建的配置中,两个测试集电路表现出意外的逻辑行为。NBM和BM都能够预测具有预期行为的互连设备的定量输出,但只有BM还能够预测一个具有意外行为的电路的输出。此外,综合考虑训练集和测试集数据,BM比NBM更准确地捕捉电路输出,NBM甚至在定性上都无法捕捉一些电路所呈现的实验输出。最后,通过BM估计的资源使用参数指导成功构建了两个表现出意外行为的电路的新的校正变体。

结论

考虑资源限制建模可实现更好的描述和预测能力,但仍需进一步努力提高生物工程模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d1/5729246/244b4e831a74/13036_2017_90_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验