Suppr超能文献

一种新颖的迎风稳定间断有限元角框架,用于磁场中确定性剂量计算。

A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

机构信息

Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, Alberta T6G 1Z2, Canada.

出版信息

Phys Med Biol. 2018 Jan 30;63(3):035018. doi: 10.1088/1361-6560/aaa2b1.

Abstract

Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

摘要

角离散化几乎影响线性 Boltzmann 输运方程确定性解的各个方面,特别是在磁场存在的情况下,磁场由角向的输运算子建模。在这项工作中,针对单位球上的角向有限元离散化,开发了一种新颖的磁场项稳定处理方法,特别是涉及沿弯曲单元边缘将路径积分分段为连续的入射和出射通量,出射分量通过迭代进行更新。使用角度上线性、二次和三次基函数的制造解方法验证了该角向框架的正确阶精度。发现高阶基函数可以减少误差,尤其是在强磁场和低密度介质中。我们将角向有限元网格与单位球上的八分边界结合起来,以空间笛卡尔体素元素结合起来,以保证空间中明确的输运扫描顺序。在存在 1.5 T 平行磁场的情况下,涉及骨骼和空气的剂量挑战性场景的准确性通过蒙特卡罗包 GEANT4 进行了验证。研究了各种角离散化参数的准确性和相对计算效率。具有二次基函数的 32 个角元素产生了合理的折衷,对于 2%/2 mm(1%/1 mm)标准,伽马通过率为 99.96%(96.22%)。对空间计算几何进行旋转变换,将任意磁场矢量定向到 z 轴,这是沿方位角进行恒定角向扫描排序的要求。在单位球上,我们对角域应用相同的旋转变换,将其八分位与旋转的笛卡尔网格对齐。针对 GEANT4 模拟斜向 1.5 T 磁场,对于 2%/2 mm(1%/1 mm)标准,伽马通过率为 99.42%(95.45%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验