Suppr超能文献

《MRI引导放射治疗确定性剂量计算的稳定性分析》勘误

Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

作者信息

Zelyak Oleksandr, Fallone B Gino, St-Aubin Joel

机构信息

Oncology, University of Alberta, 11560 University Ave NW, Edmonton, Alberta, T6G 1Z2, CANADA.

Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Edmonton, Alberta, CANADA.

出版信息

Phys Med Biol. 2018 Mar 12. doi: 10.1088/1361-6560/aab5c2.

Abstract

Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

摘要

现代放射治疗领域为应对肿瘤定位和运动挑战所做的努力催生了磁共振成像(MRI)引导的放射治疗技术。精确的剂量计算必须充分考虑MRI磁场的影响。先前的工作研究了包含磁场的确定性线性玻尔兹曼输运方程(LBTE)求解器的准确性,但未研究迭代求解方法的稳定性。在本研究中,我们对该确定性算法进行了稳定性分析,包括研究收敛速度对磁场、材料密度、能量和各向异性展开的依赖性。通过对稳态源迭代(SI)方案使用傅里叶分析来分析谱半径,从而确定包含磁场的连续和离散LBTE的迭代收敛速度。当磁场(1)作为迭代源的一部分,以及(2)在流碰撞算子内部时,计算谱半径。还研究了非稳态Krylov子空间求解器GMRES作为加速迭代收敛的潜在方法,并研究了角并行计算方法作为提高计算效率的方法。结果发现,当磁场作为迭代源的一部分时,SI不稳定,但当磁场包含在流碰撞算子中时,SI无条件稳定。使用空间角迎风稳定间断有限元方法(DFEM)离散化的含磁场LBTE也被发现是无条件稳定的,但对于非常低密度的介质和不断增加的磁场强度,谱半径迅速达到1,这表明收敛速度任意缓慢。然而,GMRES被证明能显著加速DFEM的收敛速度,且仅对磁场有微弱依赖性。此外,使用角并行计算策略有望提高剂量计算的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验