Suppr超能文献

基于血影蛋白的通路与心脏疾病中的电和机械功能障碍

Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease.

作者信息

Unudurthi Sathya D, Greer-Short Amara, Patel Nehal, Nassal Drew, Hund Thomas J

机构信息

a The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , The Ohio State University , Columbus , OH , USA.

b Department of Biomedical Engineering, College of Engineering , The Ohio State University , Columbus , OH , USA.

出版信息

Expert Rev Cardiovasc Ther. 2018 Jan;16(1):59-65. doi: 10.1080/14779072.2018.1418664. Epub 2017 Dec 26.

Abstract

In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.

摘要

在心脏中,将细胞外环境信号(如机械力、炎症应激)在细胞水平上转化为电信号和/或化学信号的信号通路,对于器官水平对慢性生物力学/神经体液应激的反应至关重要。具体而言,各种各样的膜结合受体和拉伸激活蛋白汇聚在一个细胞内信号级联网络上,该网络控制基因表达、蛋白质翻译、降解和/或调节。这些细胞重编程事件最终导致细胞兴奋性、生长、增殖和/或存活的变化。涵盖领域:肌动蛋白/血影蛋白细胞骨架不仅在为细胞器功能提供结构支持方面发挥重要作用,而且还作为一条信号“高速公路”,将膜上/膜附近的信号事件与远端细胞区域(如细胞核、线粒体)联系起来。此外,最近的研究表明,肌动蛋白/血影蛋白细胞骨架的完整性对于参与细胞应激反应的信号通路的经典信号传导至关重要。本综述讨论了血影蛋白的这些新出现的作用,并考虑了其对心脏功能和疾病的影响。专家评论:尽管我们对血影蛋白在心肌细胞和其他后生动物细胞中的更广泛作用的理解有所增加,但仍有一些重要问题未得到解答,这些问题的答案可能为人类心脏病患者的新疗法指明方向。

相似文献

1
Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease.
Expert Rev Cardiovasc Ther. 2018 Jan;16(1):59-65. doi: 10.1080/14779072.2018.1418664. Epub 2017 Dec 26.
2
Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo.
Circ Res. 2014 Nov 7;115(11):929-38. doi: 10.1161/CIRCRESAHA.115.305154. Epub 2014 Sep 19.
3
Dysfunction in the βII spectrin-dependent cytoskeleton underlies human arrhythmia.
Circulation. 2015 Feb 24;131(8):695-708. doi: 10.1161/CIRCULATIONAHA.114.013708. Epub 2015 Jan 28.
4
Defining new mechanistic roles for αII spectrin in cardiac function.
J Biol Chem. 2019 Jun 14;294(24):9576-9591. doi: 10.1074/jbc.RA119.007714. Epub 2019 May 7.
5
The role of βII spectrin in cardiac health and disease.
Life Sci. 2018 Jan 1;192:278-285. doi: 10.1016/j.lfs.2017.11.009. Epub 2017 Nov 9.
6
Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates.
Curr Top Membr. 2013;72:1-37. doi: 10.1016/B978-0-12-417027-8.00001-5.
7
A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice.
J Clin Invest. 2010 Oct;120(10):3508-19. doi: 10.1172/JCI43621. Epub 2010 Sep 27.
8
Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes.
J Cardiovasc Dev Dis. 2021 Apr 29;8(5):48. doi: 10.3390/jcdd8050048.
9
Dysfunction of the β2-spectrin-based pathway in human heart failure.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1583-91. doi: 10.1152/ajpheart.00875.2015. Epub 2016 Apr 22.
10
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.
Curr Top Membr. 2016;77:143-84. doi: 10.1016/bs.ctm.2015.10.001. Epub 2015 Nov 30.

引用本文的文献

1
The two-pore K channel TREK-1 regulates pressure overload-induced cardiac remodeling.
Am J Physiol Heart Circ Physiol. 2025 Jul 1;329(1):H178-H190. doi: 10.1152/ajpheart.00821.2024. Epub 2025 May 19.
3
Spectrin-Based Regulation of Cardiac Fibroblast Cell-Cell Communication.
Cells. 2023 Feb 26;12(5):748. doi: 10.3390/cells12050748.
4
Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties.
Pharmaceuticals (Basel). 2022 Nov 8;15(11):1369. doi: 10.3390/ph15111369.
5
Emerging therapeutic targets for cardiac hypertrophy.
Expert Opin Ther Targets. 2022 Jan;26(1):29-40. doi: 10.1080/14728222.2022.2031974. Epub 2022 Jan 27.
6
Severe Form of ßIV-Spectrin Deficiency With Mitochondrial Dysfunction and Cardiomyopathy-A Case Report.
Front Neurol. 2021 Apr 27;12:643805. doi: 10.3389/fneur.2021.643805. eCollection 2021.
7
Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes.
J Cardiovasc Dev Dis. 2021 Apr 29;8(5):48. doi: 10.3390/jcdd8050048.
8
Cytoskeletal Remodeling in Cancer.
Biology (Basel). 2020 Nov 7;9(11):385. doi: 10.3390/biology9110385.
9
Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function.
Expert Opin Ther Targets. 2021 Jan;25(1):63-73. doi: 10.1080/14728222.2021.1849145. Epub 2020 Nov 23.
10
A Fresh Look at the Structure, Regulation, and Functions of Fodrin.
Mol Cell Biol. 2020 Aug 14;40(17). doi: 10.1128/MCB.00133-20.

本文引用的文献

1
Evolutionary origin of synapses and neurons - Bridging the gap.
Bioessays. 2017 Oct;39(10). doi: 10.1002/bies.201700024. Epub 2017 Sep 1.
2
First de novo ANK3 nonsense mutation in a boy with intellectual disability, speech impairment and autistic features.
Eur J Med Genet. 2017 Sep;60(9):494-498. doi: 10.1016/j.ejmg.2017.07.001. Epub 2017 Jul 4.
3
A recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness.
Hum Genet. 2017 Jul;136(7):903-910. doi: 10.1007/s00439-017-1814-7. Epub 2017 May 24.
4
The origin of Metazoa: a unicellular perspective.
Nat Rev Genet. 2017 Aug;18(8):498-512. doi: 10.1038/nrg.2017.21. Epub 2017 May 8.
5
The paranodal cytoskeleton clusters Na channels at nodes of Ranvier.
Elife. 2017 Jan 30;6:e21392. doi: 10.7554/eLife.21392.
6
Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability.
Exp Biol Med (Maywood). 2016 Sep;241(15):1621-38. doi: 10.1177/1535370216662714. Epub 2016 Aug 1.
7
Dysfunction of the β2-spectrin-based pathway in human heart failure.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1583-91. doi: 10.1152/ajpheart.00875.2015. Epub 2016 Apr 22.
8
Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability.
J Am Heart Assoc. 2016 Apr 20;5(4):e002865. doi: 10.1161/JAHA.115.002865.
9
Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.
Sci Signal. 2015 Jul 21;8(386):ra72. doi: 10.1126/scisignal.aaa5876.
10
Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo.
Circulation. 2015 Aug 18;132(7):567-77. doi: 10.1161/CIRCULATIONAHA.114.015218. Epub 2015 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验