Suppr超能文献

利用片段导向设计鉴定用于抑制FGFR激酶的吲唑类药效团

Identification of an Indazole-Based Pharmacophore for the Inhibition of FGFR Kinases Using Fragment-Led Design.

作者信息

Turner Lewis D, Summers Abbey J, Johnson Laura O, Knowles Margaret A, Fishwick Colin W G

机构信息

School of Chemistry and Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, LS2 9JT, U.K.

出版信息

ACS Med Chem Lett. 2017 Nov 11;8(12):1264-1268. doi: 10.1021/acsmedchemlett.7b00349. eCollection 2017 Dec 14.

Abstract

Structure-based drug design (SBDD) has become a powerful tool utilized by medicinal chemists to rationally guide the drug discovery process. Herein, we describe the use of SPROUT, a -based program, to identify an indazole-based pharmacophore for the inhibition of fibroblast growth factor receptor (FGFR) kinases, which are validated targets for cancer therapy. Hit identification using SPROUT yielded 6-phenylindole as a small fragment predicted to bind to FGFR1. With the aid of docking models, several modifications to the indole were made to optimize the fragment to an indazole-containing pharmacophore, leading to a library of compounds containing 23 derivatives. Biological evaluation revealed that these indazole-containing fragments inhibited FGFR1-3 in the range of 0.8-90 μM with excellent ligand efficiencies of 0.30-0.48. Some compounds exhibited moderate selectivity toward individual FGFRs, indicating that further optimization using SBDD may lead to potent and selective inhibitors of the FGFR family.

摘要

基于结构的药物设计(SBDD)已成为药物化学家用于合理指导药物发现过程的强大工具。在此,我们描述了使用基于SPROUT的程序来鉴定用于抑制成纤维细胞生长因子受体(FGFR)激酶的基于吲唑的药效团,FGFR激酶是癌症治疗的有效靶点。使用SPROUT进行的命中化合物鉴定得到了6-苯基吲哚作为预测与FGFR1结合的小片段。借助对接模型,对吲哚进行了若干修饰,以将该片段优化为含吲唑的药效团,从而得到了一个包含23种衍生物的化合物库。生物学评估表明,这些含吲唑的片段在0.8 - 90 μM范围内抑制FGFR1 - 3,配体效率优异,为0.30 - 0.48。一些化合物对单个FGFR表现出适度的选择性,表明使用SBDD进行进一步优化可能会产生强效且选择性的FGFR家族抑制剂。

相似文献

1
Identification of an Indazole-Based Pharmacophore for the Inhibition of FGFR Kinases Using Fragment-Led Design.
ACS Med Chem Lett. 2017 Nov 11;8(12):1264-1268. doi: 10.1021/acsmedchemlett.7b00349. eCollection 2017 Dec 14.
2
From Fragment to Lead: De Novo Design and Development toward a Selective FGFR2 Inhibitor.
J Med Chem. 2022 Jan 27;65(2):1481-1504. doi: 10.1021/acs.jmedchem.1c01163. Epub 2021 Nov 15.
5
Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design.
Eur J Med Chem. 2016 Nov 29;124:186-199. doi: 10.1016/j.ejmech.2016.08.026. Epub 2016 Aug 16.
6
Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors.
Int J Mol Sci. 2015 Jun 11;16(6):13407-26. doi: 10.3390/ijms160613407.
7
Design, synthesis and evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold.
Bioorg Med Chem. 2018 Feb 1;26(3):747-757. doi: 10.1016/j.bmc.2017.12.041. Epub 2017 Dec 29.
8
Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models.
J Mol Graph Model. 2019 Jan;86:264-277. doi: 10.1016/j.jmgm.2018.09.014. Epub 2018 Oct 5.
9
10
Discovery of Substituted 1H-Pyrazolo[3,4-b]pyridine Derivatives as Potent and Selective FGFR Kinase Inhibitors.
ACS Med Chem Lett. 2016 Apr 20;7(6):629-34. doi: 10.1021/acsmedchemlett.6b00066. eCollection 2016 Jun 9.

引用本文的文献

1
Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review.
Front Chem. 2022 Apr 14;10:860985. doi: 10.3389/fchem.2022.860985. eCollection 2022.
2
Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer.
RSC Adv. 2021 Jul 20;11(41):25228-25257. doi: 10.1039/d1ra03979b. eCollection 2021 Jul 19.
3
Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives.
Molecules. 2018 Oct 26;23(11):2783. doi: 10.3390/molecules23112783.

本文引用的文献

1
Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold.
Org Biomol Chem. 2015 Jul 28;13(28):7643-54. doi: 10.1039/c5ob00778j. Epub 2015 Jun 17.
2
The Fibroblast Growth Factor signaling pathway.
Wiley Interdiscip Rev Dev Biol. 2015 May-Jun;4(3):215-66. doi: 10.1002/wdev.176. Epub 2015 Mar 13.
5
Ligand efficiency as a guide in fragment hit selection and optimization.
Drug Discov Today Technol. 2010 Autumn;7(3):e147-202. doi: 10.1016/j.ddtec.2010.11.003.
6
A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges.
Adv Urol. 2012;2012:429213. doi: 10.1155/2012/429213. Epub 2012 Jul 31.
7
Structure-based discovery of antibacterial drugs.
Nat Rev Microbiol. 2010 Jul;8(7):501-10. doi: 10.1038/nrmicro2349.
10
Cellular signaling by fibroblast growth factor receptors.
Cytokine Growth Factor Rev. 2005 Apr;16(2):139-49. doi: 10.1016/j.cytogfr.2005.01.001. Epub 2005 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验