Suppr超能文献

Aurora-A 与 N-MYC 依赖性启动子逃脱相关,并控制 RNA 聚合酶 II 在细胞周期中的暂停释放。

Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle.

机构信息

Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.

Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK.

出版信息

Cell Rep. 2017 Dec 19;21(12):3483-3497. doi: 10.1016/j.celrep.2017.11.090.

Abstract

MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.

摘要

MYC 蛋白与活跃的启动子广泛结合,并通过 RNA 聚合酶 II(Pol II)促进转录延伸。为了鉴定介导此功能的效应蛋白,我们在神经母细胞瘤细胞中对 N-MYC 复合物进行了质谱分析。分析表明,N-MYC 与 TFIIIC、TOP2A 和 RAD21(黏合蛋白的一个亚基)形成复合物。N-MYC 和 TFIIIC 结合到数千个 Pol II 启动子和基因间区域的重叠位点。TFIIIC 促进 RAD21 与 N-MYC 靶位点的结合,并且对于 N-MYC 依赖性启动子逃避和 Pol II 的暂停释放是必需的。Aurora-A 在体外与 TFIIIC 和 RAD21 与 N-MYC 的结合竞争,并在 S 期拮抗 TOP2A、TFIIIC 和 RAD21 与 N-MYC 的结合,阻止 Pol II 从启动子上的 N-MYC 依赖性释放。S 期抑制 Aurora-A 可恢复 RAD21 和 TFIIIC 与染色质的结合,并部分恢复 N-MYC 依赖性转录延伸。我们提出,与 Aurora-A 的复合物形成在细胞周期中控制 N-MYC 的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/920f/5746598/f392211444cc/fx1.jpg

相似文献

4
Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase.
Nature. 2019 Mar;567(7749):545-549. doi: 10.1038/s41586-019-1030-9. Epub 2019 Mar 20.
5
Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
Mol Cell. 2016 Jan 7;61(1):54-67. doi: 10.1016/j.molcel.2015.11.007. Epub 2015 Dec 10.
6
c-Myc regulates transcriptional pause release.
Cell. 2010 Apr 30;141(3):432-45. doi: 10.1016/j.cell.2010.03.030.
7
MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation.
Mol Cell. 2019 May 16;74(4):674-687.e11. doi: 10.1016/j.molcel.2019.02.031. Epub 2019 Mar 27.
8
TFIIIC localizes budding yeast ETC sites to the nuclear periphery.
Mol Biol Cell. 2012 Jul;23(14):2741-54. doi: 10.1091/mbc.E11-04-0365. Epub 2012 Apr 11.
9
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
Gene. 2012 Feb 10;493(2):169-75. doi: 10.1016/j.gene.2011.09.018. Epub 2011 Oct 1.

引用本文的文献

1
MYC: The Guardian of Its Own Chaos.
Bioessays. 2025 Jul;47(7):e70010. doi: 10.1002/bies.70010. Epub 2025 Jun 9.
7
Immune evasion: An imperative and consequence of MYC deregulation.
Mol Oncol. 2024 Oct;18(10):2338-2355. doi: 10.1002/1878-0261.13695. Epub 2024 Jul 2.
8
Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2.
Gut. 2024 Aug 8;73(9):1509-1528. doi: 10.1136/gutjnl-2023-331519.
9
The choreography of chromatin in RNA polymerase III regulation.
Biochem Soc Trans. 2024 Jun 26;52(3):1173-1189. doi: 10.1042/BST20230770.
10
MYCN drives oncogenesis by cooperating with the histone methyltransferase G9a and the WDR5 adaptor to orchestrate global gene transcription.
PLoS Biol. 2024 Mar 28;22(3):e3002240. doi: 10.1371/journal.pbio.3002240. eCollection 2024 Mar.

本文引用的文献

1
The cohesin complex prevents Myc-induced replication stress.
Cell Death Dis. 2017 Jul 27;8(7):e2956. doi: 10.1038/cddis.2017.345.
2
Conflict Resolution in the Genome: How Transcription and Replication Make It Work.
Cell. 2016 Dec 1;167(6):1455-1467. doi: 10.1016/j.cell.2016.09.053.
3
Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13726-13731. doi: 10.1073/pnas.1610626113. Epub 2016 Nov 11.
4
N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
Cancer Cell. 2016 Oct 10;30(4):563-577. doi: 10.1016/j.ccell.2016.09.005.
5
A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer.
Nat Med. 2016 Jul;22(7):744-53. doi: 10.1038/nm.4107. Epub 2016 May 23.
6
CTCF: making the right connections.
Genes Dev. 2016 Apr 15;30(8):881-91. doi: 10.1101/gad.277863.116.
7
RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription.
Cell. 2016 Apr 7;165(2):357-71. doi: 10.1016/j.cell.2016.02.036.
9
BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis.
Nat Commun. 2016 Jan 5;7:10153. doi: 10.1038/ncomms10153.
10
Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
Mol Cell. 2016 Jan 7;61(1):54-67. doi: 10.1016/j.molcel.2015.11.007. Epub 2015 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验