University of Texas at San Antonio Neurosciences Institute, Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249.
University of Texas at San Antonio Neurosciences Institute, Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
J Neurosci. 2018 Jan 31;38(5):1151-1159. doi: 10.1523/JNEUROSCI.1975-17.2017. Epub 2017 Dec 20.
Substantia nigra pars compacta (SNc) dopamine neurons and their targets are involved in addiction and cue-induced relapse. However, afferents onto SNc dopamine neurons themselves appear insensitive to drugs of abuse, such as cocaine, when afferents are collectively stimulated electrically. This contrasts with ventral tegmental area (VTA) dopamine neurons, whose glutamate afferents react robustly to cocaine. We used an optogenetic strategy to isolate identified SNc inputs and determine whether cocaine sensitivity in the mouse SNc circuit is conferred at the level of three glutamate afferents: dorsal raphé nucleus (DR), pedunculopontine nucleus (PPN), and subthalamic nucleus (STN). We found that excitatory afferents to SNc dopamine neurons are sensitive to cocaine in an afferent-specific manner. A single exposure to cocaine led to PPN-innervated synapses reducing the AMPA-to-NMDA receptor-mediated current ratio. In contrast to work in the VTA, this was due to increased NMDA receptor function with no change in AMPA receptor function. STN synapses showed a decrease in calcium-permeable AMPA receptors after cocaine, but no change in the AMPA-to-NMDA ratio. Cocaine also increased the release probability at DR-innervated and STN-innervated synapses, quantified by decreases in paired-pulse ratios. However, release probability at PPN-innervated synapses remained unaffected. By examining identified inputs, our results demonstrate a functional distribution among excitatory SNc afferent nuclei in response to cocaine, and suggest a compelling architecture for differentiation and separate parsing of inputs within the nigrostriatal system. Prior studies have established that substantia nigra pars compacta (SNc) dopamine neurons are a key node in the circuitry that drives addiction and relapse, yet cocaine apparently has no effect on electrically stimulated excitatory inputs. Our study is the first to demonstrate the functional impact of a drug of abuse on synaptic mechanisms of identified afferents to the SNc. Optogenetic dissection of inputs originating from dorsal raphé, pedunculopontine, and subthalamic nuclei were tested for synaptic modifications following cocaine exposure. Our results demonstrate that cocaine differentially induces modifications to SNc synapses depending on input origin. This presents implications for understanding dopamine processing of motivated behavior; most critically, it indicates that dopamine neurons selectively modulate signal reception processed by afferent nuclei.
黑质致密部(SNc)多巴胺神经元及其靶标参与成瘾和线索诱导的复发。然而,当电刺激传入纤维时,SNc 多巴胺神经元自身的传入纤维似乎对可卡因等滥用药物不敏感。这与腹侧被盖区(VTA)多巴胺神经元形成对比,VTA 多巴胺神经元的谷氨酸传入纤维对可卡因反应强烈。我们使用光遗传学策略来分离鉴定的 SNc 输入,并确定在小鼠 SNc 电路中可卡因的敏感性是否由三种谷氨酸传入纤维赋予:中脑背侧 Raphe 核(DR)、脑桥被盖外侧核(PPN)和丘脑底核(STN)。我们发现,SNc 多巴胺神经元的兴奋性传入纤维以传入纤维特异性的方式对可卡因敏感。单次可卡因暴露导致 PPN 支配的突触减少 AMPA 到 NMDA 受体介导的电流比值。与 VTA 中的工作不同,这是由于 NMDA 受体功能增加而 AMPA 受体功能没有改变。与 VTA 中的工作不同,与可卡因后钙通透性 AMPA 受体减少相反,在 STN 突触中 AMPA 到 NMDA 比值没有变化。可卡因还通过降低成对脉冲比来增加 DR 支配和 STN 支配的突触的释放概率。然而,PPN 支配的突触的释放概率保持不变。通过检查鉴定的输入,我们的结果表明,在可卡因作用下,兴奋性 SNc 传入核之间存在功能分布,并表明在黑质纹状体系统中分化和单独解析输入具有引人注目的结构。先前的研究已经确定,黑质致密部(SNc)多巴胺神经元是驱动成瘾和复发的电路中的关键节点,然而可卡因显然对电刺激的兴奋性传入没有影响。我们的研究首次证明了滥用药物对 SNc 传入的突触机制的功能影响。测试了来自中脑背侧 Raphe、脑桥被盖外侧核和丘脑底核的输入的光遗传学分离,以测试可卡因暴露后突触的变化。我们的结果表明,可卡因根据输入来源的不同,差异诱导 SNc 突触的变化。这对理解动机行为的多巴胺处理具有启示意义;最重要的是,它表明多巴胺神经元选择性地调节传入核处理的信号接收。