López Zavala Miguel Ángel, Lozano Morales Samuel Alejandro, Ávila-Santos Manuel
Tecnológico de Monterrey, Water Center for Latin America and the Caribbean, Av. Eugenio Garza Sada Sur No. 2501, Col. Tecnológico, Monterrey, N. L., México, C.P. 64849.
Cátedra CONACYT, Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 103H, Puebla, Pue. 72570, México.
Heliyon. 2017 Nov 22;3(11):e00456. doi: 10.1016/j.heliyon.2017.e00456. eCollection 2017 Nov.
Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.
评估了水热处理、酸洗和退火温度对TiO纳米管形成过程中结构和形貌的影响。进行了X射线衍射、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能量色散X射线光谱分析,以描述纳米管结构和形貌的形成与特征。TiO前驱体纳米颗粒的水热处理和酸洗是形成和确定纳米管结构的基础。水热处理导致前驱体纳米颗粒的结晶度从锐钛矿相转变为单斜相,这是TiO纳米片结构的特征。酸洗促进了高纯度纳米管的形成,因为Na从钛酸盐结构交换到盐酸(HCl)溶液中。退火温度影响纳米管的尺寸、结构和形貌。400℃至600℃范围内的退火温度最适合保持纳米管高度稳定的管状形貌。此外,纳米管保留了前驱体德固赛P25纳米颗粒的物理化学性质。高于600℃的温度会使纳米管的形貌从管状转变为不规则的纳米颗粒结构,这些纳米颗粒比前驱体材料的纳米颗粒更大,即结晶度从锐钛矿相转变为金红石相,导致纳米管塌陷。