Suppr超能文献

子宫腺肌病相关盆腔疼痛综合征的免疫炎症预测指标

Immune-inflammatory predictors of the pelvic pain syndrome associated with adenomyosis.

作者信息

Orazov M R, Radzinsky V E, Nosenko E N, Khamoshina M B, Dukhin A O, Lebedeva M G

机构信息

a Federal State Autonomous Educational Institution 'Peoples' Friendship University of Russia' , Moscow , Russia.

b Odessa National Medical University, Ministry of Health of the Ukraine , Odessa, Ukraine.

出版信息

Gynecol Endocrinol. 2017;33(sup1):44-46. doi: 10.1080/09513590.2017.1399696.

Abstract

The aim of the study was the analysis of immune inflammatory processes in the development of the pelvic pain syndrome associated with adenomyosis. For morphological examination were used 54 fragments of the myometrium obtained from patients after hysterectomy with pelvic pain on a background of diffuse adenomyosis of II-III degree, and 20 patients with painless form of adenomyosis. The identification of the macrophages distribution was held by means of an immune-hysto-chemical analysis of MAT (monoclonal antibody) for CD68. (Clone PG-M1, 'Diagnostic BioSystems', USA). The results of the study showed a significantly higher expression of CD68 (49.3 ± 2.3 vs. 21.2 ± 1.7 units. p < .01) in patients with painful adenomyosis form in areas of the ectopic endometrium, in the perivascular regions of the myometrium, as compared to those areas in women with painless group. We assume that these factors increase neurogenic inflammation and sensitivity of nociceptors in myometrium, activation of peripheral nerve fibers and, can act as triggers of the pelvic pain syndrome associated with adenomyosis.

摘要

本研究的目的是分析与子宫腺肌病相关的盆腔疼痛综合征发展过程中的免疫炎症过程。为进行形态学检查,使用了54份子宫肌层组织碎片,这些组织取自患有II - III度弥漫性子宫腺肌病且伴有盆腔疼痛的患者,在子宫切除术后获得,另外还使用了20例无痛型子宫腺肌病患者的组织。通过对CD68的MAT(单克隆抗体)进行免疫组织化学分析来确定巨噬细胞的分布。(克隆PG - M1,“Diagnostic BioSystems”,美国)。研究结果显示,与无痛组女性的相应区域相比,疼痛型子宫腺肌病患者在异位子宫内膜区域、子宫肌层血管周围区域的CD68表达显著更高(49.3±2.3对21.2±1.7单位,p < 0.01)。我们认为,这些因素会增加子宫肌层的神经源性炎症和伤害感受器的敏感性,激活外周神经纤维,并可能成为与子宫腺肌病相关的盆腔疼痛综合征的触发因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验