Suppr超能文献

聚合物模板化 LiFePO/C 纳米网络作为锂离子电池的高性能正极材料。

Polymer-Templated LiFePO/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries.

机构信息

Adolphe Merkle Institute, Université de Fribourg , Chemin des Verdiers 4, 1700 Fribourg, Switzerland.

Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.

出版信息

ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1646-1653. doi: 10.1021/acsami.7b12376. Epub 2018 Jan 5.

Abstract

Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.

摘要

磷酸铁锂(LFP)因其安全性、相对较低的成本和出色的循环寿命,目前是锂离子电池中主要的阴极材料之一。为了克服其较差的离子和电子电导率,LFP 通常被纳米结构化,并在其表面涂覆导电碳(LFP/C)。在这里,我们展示了一种基于溶胶-凝胶的合成方法,该方法利用嵌段共聚物(BCP)作为模板剂和均聚物作为额外的碳源。高分子量 BCP 在 10nm 尺度上与前体溶胶形成自组装聚集体,在高温下结晶时稳定 LFP 结构。这导致形成由相互连接的约 10nm 大小的颗粒组成的 LFP 纳米网络,这些颗粒被均匀的碳涂层覆盖,显示出高倍率性能和优异的循环寿命。我们的“一锅法”简便且适用于现有的电池生产方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验