Suppr超能文献

通过互连碳网络实现用于实用型高能锂离子电池的高性能磷酸铁锂阴极。

Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries.

作者信息

Li Binke, Xiao Jianqi, Zhu Xiaoyi, Wu Zhuoyan, Zhang Xushan, Han Yu, Niu Jin, Wang Feng

机构信息

Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, PR China; State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.

State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.

出版信息

J Colloid Interface Sci. 2024 Jan;653(Pt A):942-948. doi: 10.1016/j.jcis.2023.09.133. Epub 2023 Sep 23.

Abstract

The olivine lithium iron phosphate (LFP) cathode has gained significant utilization in commercial lithium-ion batteries (LIBs) with graphite anodes. However, the actual capacity and rate performance of LFP still require further enhancement when combined with high-capacity anodes, such as silicon (Si) anodes, to achieve high-energy LIBs. In this study, we introduce a gelatin-derived carbon network into a nanosized LFP cathode without the need for additional binding and conductive agents, employing a simple and cost-effective method. The resulting cathode exhibits an extremely high LFP content (∼92.3 wt%), enabling it to show a high real capacity of 159.7 mAh/g at 0.2 C in half cells. Additionally, the interconnected carbon network effectively facilitates electron and Li transport, providing rapid pathways within the LFP nanoparticles. Consequently, the cathode exhibits superior rate capability (107.3 mAh/g at 10 C) and good cycling performance (with a capacity retention of ∼ 80 % after 500 cycles). To further assess its practical viability, the LFP cathode is assembled into a full cell utilizing a Si-based anode with a N/P ratio of 1.1. The resulting full cell delivers a significantly high energy density of 419.7 Wh kg, coupled with prolonged cycle life, highlighting its promising prospects for practical applications.

摘要

橄榄石型磷酸锂铁(LFP)阴极在与石墨阳极搭配的商用锂离子电池(LIB)中得到了广泛应用。然而,当与高容量阳极(如硅(Si)阳极)结合以实现高能量锂离子电池时,LFP的实际容量和倍率性能仍需进一步提高。在本研究中,我们采用一种简单且经济高效的方法,将明胶衍生的碳网络引入纳米级LFP阴极,无需额外的粘结剂和导电剂。所得阴极表现出极高的LFP含量(约92.3 wt%),使其在半电池中于0.2 C下显示出159.7 mAh/g的高实际容量。此外,相互连接的碳网络有效地促进了电子和Li的传输,在LFP纳米颗粒内提供了快速通道。因此,该阴极表现出优异的倍率性能(在10 C下为107.3 mAh/g)和良好的循环性能(500次循环后容量保持率约为80%)。为了进一步评估其实际可行性,将LFP阴极与N/P比为1.1的硅基阳极组装成全电池。所得全电池具有419.7 Wh kg的显著高能量密度,同时具有长循环寿命,突出了其在实际应用中的广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验