Suppr超能文献

利用深度学习提高动脉自旋标记技术。

Improving Arterial Spin Labeling by Using Deep Learning.

机构信息

From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).

出版信息

Radiology. 2018 May;287(2):658-666. doi: 10.1148/radiol.2017171154. Epub 2017 Dec 21.

Abstract

Purpose To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean ± standard deviation, 19.7 mL per 100 g/min ± 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 ± 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. RSNA, 2017.

摘要

目的 开发一种深度学习算法,通过使用更少的减影图像来提高动脉自旋标记(ASL)灌注图像的准确性和稳健性。

材料与方法 对于来自成对减影的 ASL 图像生成,我们使用卷积神经网络(CNN)作为深度学习算法。通过平均来自七名健康受试者的六或七对(a)常规伪连续动脉自旋标记或(b)来自患有各种疾病的 114 名患者的 Hadamard 编码伪连续 ASL 的成对减影图像来生成灌注图像。使用交叉验证来训练 CNN 以从较少数量(两个或三个)的减影图像生成灌注图像,并对其进行评估。还使用 26 个单独的中风数据集测试了来自患者数据集的 CNN。通过配对 t 检验和/或 Wilcoxon 符号秩检验,使用均方误差和放射学评分比较了 CNN 和常规平均法。

结果 对于来自健康受试者和患者的交叉验证以及单独的中风患者测试,均方误差比常规平均法低约 40%(P <.001)。在中风区域的感兴趣区域分析中,来自 CNN 的脑血流图(均值 ± 标准差,19.7 ± 9.7 mL/100 g/min)的均方误差小于常规平均法(43.2 ± 29.8)(P <.001)。放射学评分表明,与常规平均法相比,CNN 能够更好地抑制噪声和运动以及/或分割伪影(P <.001)。

结论 与常规平均法相比,CNN 可提供更高质量的灌注图像,并能更准确地测量灌注,用于从成对减影图像生成 ASL 图像。

RSNA,2017 年。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验