Suppr超能文献

使用分类与回归树分析对婴儿心脏移植术后早期生存情况进行术前预测。

Prelisting predictions of early postoperative survival in infant heart transplantation using classification and regression tree analysis.

作者信息

Chen Ching Kit, Manlhiot Cedric, Mital Seema, Schwartz Steven M, Van Arsdell Glen S, Caldarone Christopher, McCrindle Brian W, Dipchand Anne I

机构信息

Cardiology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore City, Singapore.

Department of Pediatrics, Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

出版信息

Pediatr Transplant. 2018 Mar;22(2). doi: 10.1111/petr.13105. Epub 2017 Dec 21.

Abstract

Infants listed for heart transplantation experience high waitlist and early post-transplant mortality, and thus, optimal allocation of scarce donor organs is required. Unfortunately, the creation and validation of multivariable regression models to identify risk factors and generate individual-level predictions are challenging. We sought to explore the use of data mining methods to generate a prediction model. CART analysis was used to create a model which, at the time of listing, would predict which infants listed for heart transplantation would survive at least 3 months post-transplantation. A total of 48 infants were included; 13 died while waiting, and six died within 3 months of heart transplant. CART analysis identified RRT, blood urea nitrogen, and hematocrit as terminal nodes with alanine transaminase as an intermediate node predicting death. No patients listed on RRT (n = 10) survived and only three of 12 (25%) patients listed on ECLS survived >3 months post-transplant. CART analysis overall accuracy was 83%, with sensitivity of 95% and specificity 76%. This study shows that CART analysis can be used to generate accurate prediction models in small patient populations. Model validation will be necessary before incorporation into decision-making algorithms used to determine transplant candidacy.

摘要

等待心脏移植的婴儿在等待名单上以及移植后的早期死亡率都很高,因此,需要对稀缺的供体器官进行优化分配。不幸的是,创建和验证多变量回归模型以识别风险因素并生成个体水平的预测具有挑战性。我们试图探索使用数据挖掘方法来生成预测模型。使用CART分析创建一个模型,该模型在列入名单时能够预测哪些等待心脏移植的婴儿在移植后至少存活3个月。总共纳入了48名婴儿;13名在等待期间死亡,6名在心脏移植后3个月内死亡。CART分析确定肾替代治疗(RRT)、血尿素氮和血细胞比容为终末节点,丙氨酸转氨酶作为预测死亡的中间节点。接受肾替代治疗(n = 10)的患者无一存活,接受体外膜肺氧合(ECLS)治疗的12名患者中只有3名(25%)在移植后存活超过3个月。CART分析的总体准确率为83%,敏感性为95%,特异性为76%。这项研究表明,CART分析可用于在小患者群体中生成准确的预测模型。在纳入用于确定移植候选资格的决策算法之前,有必要进行模型验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验