Suppr超能文献

利用数据挖掘技术建立预测新生儿呼吸窘迫综合征及影响因素的模型:一项横断面研究。

Developing a model to predict neonatal respiratory distress syndrome and affecting factors using data mining: A cross-sectional study.

作者信息

Farshid Parisa, Mirnia Kayvan, Rezaei-Hachesu Peyman, Maserat Elham, Samad-Soltani Taha

机构信息

Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.

Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Int J Reprod Biomed. 2023 Dec 19;21(11):909-920. doi: 10.18502/ijrm.v21i11.14654. eCollection 2023 Nov.

Abstract

One of the major challenges that hospitals and clinicians face is the early identification of newborns at risk for adverse events. One of them is neonatal respiratory distress syndrome (RDS). RDS is the widest spared respiratory disorder in immature newborns and the main source of death among them. Machine learning has been broadly accepted and used in various scopes to analyze medical information and is very useful in the early detection of RDS. This study aimed to develop a model to predict neonatal RDS and affecting factors using data mining. The original dataset in this cross-sectional study was extracted from the medical records of newborns diagnosed with RDS from July 2017-July 2018 in Alzahra hospital, Tabriz, Iran. This data includes information about 1469 neonates, and their mothers information. The data were preprocessed and applied to expand the classification model using machine learning techniques such as support vector machine, Naïve Bayes, classification tree, random forest, CN2 rule induction, and neural network, for prediction of RDS episodes. The study compares models according to their accuracy. Among the obtained results, an accuracy of 0.815, sensitivity of 0.802, specificity of 0.812, and area under the curve of 0.843 was the best output using random forest. The findings of our study proved that new approaches, such as data mining, may support medical decisions, improving diagnosis in neonatal RDS. The feasibility of using a random forest in neonatal RDS prediction would offer the possibility to decrease postpartum complications of neonatal care.

摘要

医院和临床医生面临的主要挑战之一是早期识别有不良事件风险的新生儿。其中之一是新生儿呼吸窘迫综合征(RDS)。RDS是未成熟新生儿中最常见的呼吸系统疾病,也是他们死亡的主要原因。机器学习已在各种领域被广泛接受和应用,用于分析医疗信息,在RDS的早期检测中非常有用。本研究旨在开发一种使用数据挖掘来预测新生儿RDS及其影响因素的模型。这项横断面研究的原始数据集取自2017年7月至2018年7月在伊朗大不里士阿尔扎赫拉医院被诊断为RDS的新生儿的医疗记录。这些数据包括1469名新生儿的信息及其母亲的信息。对数据进行预处理,并应用机器学习技术(如支持向量机、朴素贝叶斯、分类树、随机森林、CN2规则归纳和神经网络)来扩展分类模型,以预测RDS发作。该研究根据模型的准确性对其进行比较。在所得结果中,使用随机森林的最佳输出是准确率为0.815、灵敏度为0.802、特异性为0.812以及曲线下面积为0.843。我们的研究结果证明,诸如数据挖掘等新方法可能有助于医疗决策,改善新生儿RDS的诊断。在新生儿RDS预测中使用随机森林的可行性将为减少新生儿护理的产后并发症提供可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5872/10823121/06560a1e65ee/ijrb-21-909-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验