Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University , Beijing 102206, P. R. China.
Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China.
ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1781-1791. doi: 10.1021/acsami.7b17781. Epub 2018 Jan 5.
Morphology regulation is vital to obtain high-performance perovskite films. Vapor-assisted deposition provides a simple approach to prepare perovskite films with controlled vapor-solid reaction. However, dense PbI precursor films with large crystal grains make it difficult for organic molecules to diffuse and interact with inner PbI frame. Here, a surface modification process is developed to optimize the surface layer morphology of PbI precursor films and lower the resistance of the induced period in crystallization. The vapor optimization time is shortened to several seconds, and the intermediate phase forms on the surface layer of PbI films. We achieve porous PbI surface with smaller grains through dimethyl sulfoxide vapor treatment, which promotes the migration and reaction rate between CHNHI vapor and PbI layer. The PbI precursor films undergo dramatic morphological evolution due to the formed intermediate phase on PbI surface layer. Taking advantage of the proposed surface modification process, we achieve high-quality uniform perovskite films with larger crystal grains and without residual PbI. The repeatable perovskite solar cells (PSCs) with modified films exhibit power conversion efficiency of up to 18.43% for planar structure. Moreover, the devices show less hysteresis because of improved quality and reduced defect states of the films. Our work expands the application of morphology control through forming intermediate phase and demonstrates an effective way to enhance the performance of the PSCs.
形态调控对于获得高性能钙钛矿薄膜至关重要。气相辅助沉积为制备具有可控气-固反应的钙钛矿薄膜提供了一种简单的方法。然而,致密的 PbI 前驱体薄膜具有较大的晶粒,使得有机分子难以扩散并与内部的 PbI 框架相互作用。在这里,开发了一种表面修饰工艺来优化 PbI 前驱体薄膜的表面层形态,并降低结晶诱导期的电阻。气相优化时间缩短至几秒钟,并且在 PbI 薄膜的表面层上形成中间相。我们通过二甲基亚砜蒸气处理实现了具有更小晶粒的多孔 PbI 表面,这促进了 CHNHI 蒸气和 PbI 层之间的迁移和反应速率。由于 PbI 表面层上形成的中间相,PbI 前驱体薄膜经历了剧烈的形态演变。利用所提出的表面修饰工艺,我们实现了具有更大晶粒且无残留 PbI 的高质量均匀钙钛矿薄膜。经过修饰的薄膜的可重复钙钛矿太阳能电池 (PSC) 的平面结构的功率转换效率高达 18.43%。此外,由于薄膜的质量提高和缺陷态减少,器件的滞后现象较小。我们的工作通过形成中间相扩展了形态控制的应用,并展示了一种增强 PSCs 性能的有效方法。