Vascular Biology Center, Augusta University, Augusta, Georgia.
Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada.
J Cell Physiol. 2019 May;234(5):5863-5879. doi: 10.1002/jcp.26419. Epub 2018 Dec 17.
Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.
维持内皮细胞(EC)屏障对于血管稳态至关重要,而屏障完整性的丧失会导致血管通透性增加。尽管过去几十年一直在深入研究控制 EC 通透性增加的机制,但调节 EC 屏障的维持/恢复的过程仍知之甚少。在此,我们发现细胞外嘌呤,腺苷(Ado)和腺苷 5'-[γ-硫]-三磷酸(ATPγS)可以增强人肺微血管内皮细胞(HLMVEC)的屏障功能。这种能力涉及蛋白激酶 A(PKA)的激活,以及肌球蛋白轻链 20(MLC20)磷酸化的减少,这是由于肌球蛋白轻链磷酸酶(MLCP)的参与。与 Ado 不同,ATPγS 诱导的 PKA 激活伴随着环腺苷酸(cAMP)水平的适度但显著降低,支持 PKA 激活的非传统 cAMP 非依赖性途径的存在。此外,ATPγS 诱导的 EC 屏障增强不涉及被 cAMP 直接激活的 Rap 鸟嘌呤核苷酸交换因子 3(EPAC1),而是依赖于蛋白激酶 A 锚定蛋白 2(AKAP2)的表达。我们还发现 AKAP2 可以直接与肌球蛋白磷酸酶靶向蛋白 MYPT1 相互作用,并且 AKAP2 的耗竭消除了 ATPγS 诱导的跨内皮电阻增加。Ado 诱导的 HLMVEC 屏障增强需要 PKA 和 EPAC1 的协调激活,这是一种 cAMP 依赖性方式。总之,ATPγS 诱导的 EC 屏障增强与 EPAC1 无关,而是通过 PKA 的激活介导的,然后由 AKAP2 指导,在 cAMP 非依赖性机制中,激活 MLCP,使 MLC20 去磷酸化,导致 EC 收缩减少和保存。