Suppr超能文献

聚肌胞、CpG 寡脱氧核苷酸和阳离子肽对 TC-1 移植瘤小鼠模型通过预防性和治疗性免疫接种 HPV E7 表位疫苗的协同作用。

Synergy effects of Polyinosinic-polycytidylic acid, CpG oligodeoxynucleotide, and cationic peptides to adjuvant HPV E7 epitope vaccine through preventive and therapeutic immunization in a TC-1 grafted mouse model.

机构信息

a Laboratory of Molecular Immunology, Institute of Medical Biology, the Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China.

b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases , Kunming , China.

出版信息

Hum Vaccin Immunother. 2018 Apr 3;14(4):931-940. doi: 10.1080/21645515.2017.1420446. Epub 2018 Jan 23.

Abstract

Cross-talk by pattern recognition receptors may facilitate the maturation of dendritic cells and fine tune the immune response. Thus, the inclusion of ligands agonistic to multiple receptors in a vaccine formula may be an effective strategy to elicit robust antitumor cellular immunity. We tested the adjuvant effects and possible synergy of CpG (CpG oligodeoxynucleotide), Poly I:C (polyinosinic-polycytidylic acid) and the cationic peptide Cramp (cathelicidin-related antimicrobial peptide) formulated in a DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) liposomal HPV E7 epitope vaccine on a TC-1 grafted mouse model. The vaccine formulations were administered both preventively and therapeutically. Based on our results, both CpG and Poly I:C-adjuvanted vaccines abolished tumor development in a preventive trial and significantly suppressed tumor growth in a therapeutic trial. Increased interferon (IFN)-γ expression and potent memory T cells in splenocytes as well as elevated CD8+IFN-γ+ cells in both spleen and tumor tissue indicated an elevated E7-specific cellular immune response. Although synergistic effects were detected between CpG and Poly I:C, their adjuvant effects were not enhanced further when combined with Cramp. Because the enhancement of tumor antigen-specific cellular immune responses is vital for the clearance of infected and cancerous cells, our results contribute a potential adjuvant combination for cancer vaccines.

摘要

模式识别受体的交联可能有助于树突状细胞的成熟,并微调免疫反应。因此,在疫苗配方中包含多种受体激动剂配体可能是引发强大抗肿瘤细胞免疫的有效策略。我们在 TC-1 移植小鼠模型上测试了 CpG(CpG 寡脱氧核苷酸)、Poly I:C(聚肌苷酸-聚胞苷酸)和阳离子肽 Cramp(抗菌肽相关的抗菌肽)联合在 DOTAP(1,2-二油酰基-3-三甲基铵丙烷)脂质体 HPV E7 表位疫苗中的佐剂效应和可能的协同作用。疫苗制剂进行了预防性和治疗性给药。根据我们的结果,CpG 和 Poly I:C 佐剂疫苗在预防性试验中消除了肿瘤的发展,并在治疗性试验中显著抑制了肿瘤的生长。脾细胞中干扰素 (IFN)-γ 表达和有效的记忆 T 细胞增加,以及脾和肿瘤组织中 CD8+IFN-γ+细胞的升高,表明 E7 特异性细胞免疫反应增强。尽管 CpG 和 Poly I:C 之间检测到协同作用,但当与 Cramp 联合使用时,它们的佐剂作用并没有进一步增强。因为增强肿瘤抗原特异性细胞免疫反应对于清除感染和癌细胞至关重要,所以我们的结果为癌症疫苗提供了一种潜在的佐剂组合。

相似文献

6
Self-Assembled Nanofibers Elicit Potent HPV16 E7-Specific Cellular Immunity And Abolish Established TC-1 Graft Tumor.
Int J Nanomedicine. 2019 Oct 10;14:8209-8219. doi: 10.2147/IJN.S214525. eCollection 2019.
7
Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant.
Vaccine. 2014 Jun 30;32(31):3927-35. doi: 10.1016/j.vaccine.2014.05.050. Epub 2014 May 28.
8
Enhanced anti-tumor effects of HPV16E7(49-57)-based vaccine by combined immunization with poly(I:C) and oxygen-regulated protein 150.
Cancer Epidemiol. 2013 Apr;37(2):172-8. doi: 10.1016/j.canep.2012.10.005. Epub 2012 Nov 3.

引用本文的文献

1
Nanovaccines against Cervical Cancer: Reliable Strategies to Circumvent Limitations of Traditional Therapeutic Vaccines.
Adv Pharm Bull. 2025 Mar 8;15(1):46-59. doi: 10.34172/apb.43712. eCollection 2025 Apr.
2
Off-The-Shelf Multivalent Nanoconjugate Cancer Vaccine Rescues Host Immune Response against Melanoma.
Adv Mater. 2025 Apr;37(16):e2417348. doi: 10.1002/adma.202417348. Epub 2025 Feb 12.
3
Current status and future directions for the development of human papillomavirus vaccines.
Front Immunol. 2024 Jun 25;15:1362770. doi: 10.3389/fimmu.2024.1362770. eCollection 2024.
4
Biodegradable scaffolds for enhancing vaccine delivery.
Bioeng Transl Med. 2023 Aug 21;8(6):e10591. doi: 10.1002/btm2.10591. eCollection 2023 Nov.
5
6
Liposomal Formulations of a Polyleucine-Antigen Conjugate as Therapeutic Vaccines against Cervical Cancer.
Pharmaceutics. 2023 Feb 10;15(2):602. doi: 10.3390/pharmaceutics15020602.
7
Stimulation of the immune system by a tumor antigen-bearing adenovirus-inspired VLP allows control of melanoma growth.
Mol Ther Methods Clin Dev. 2022 Dec 7;28:76-89. doi: 10.1016/j.omtm.2022.12.003. eCollection 2023 Mar 9.
8
Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance.
Front Immunol. 2021 May 13;12:674048. doi: 10.3389/fimmu.2021.674048. eCollection 2021.
9
Polysaccharide-based nanomedicines for cancer immunotherapy: A review.
Bioact Mater. 2021 Mar 18;6(10):3358-3382. doi: 10.1016/j.bioactmat.2021.03.008. eCollection 2021 Oct.

本文引用的文献

2
CD4 and CD8 T lymphocyte interplay in controlling tumor growth.
Cell Mol Life Sci. 2018 Feb;75(4):689-713. doi: 10.1007/s00018-017-2686-7. Epub 2017 Oct 14.
3
An immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 2017 Jul 13;547(7662):217-221. doi: 10.1038/nature22991. Epub 2017 Jul 5.
6
CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies.
Int J Nanomedicine. 2017 Jan 16;12:515-531. doi: 10.2147/IJN.S114477. eCollection 2017.
7
Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development.
J Control Release. 2017 Feb 10;247:134-144. doi: 10.1016/j.jconrel.2017.01.004. Epub 2017 Jan 7.
8
PolyI:C and CpG Synergize with Anti-ErbB2 mAb for Treatment of Breast Tumors Resistant to Immune Checkpoint Inhibitors.
Cancer Res. 2017 Jan 15;77(2):312-319. doi: 10.1158/0008-5472.CAN-16-1873. Epub 2016 Nov 21.
9
Perspectives for therapeutic HPV vaccine development.
J Biomed Sci. 2016 Nov 4;23(1):75. doi: 10.1186/s12929-016-0293-9.
10
Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7240-E7249. doi: 10.1073/pnas.1608555113. Epub 2016 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验