VA Center for Clinical Management Research, VA Ann Arbor Health Care System, Ann Arbor, Michigan.
Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan.
Inflamm Bowel Dis. 2017 Dec 19;24(1):45-53. doi: 10.1093/ibd/izx007.
Inflammatory bowel disease (IBD) is a chronic disease characterized by unpredictable episodes of flares and periods of remission. Tools that accurately predict disease course would substantially aid therapeutic decision-making. This study aims to construct a model that accurately predicts the combined end point of outpatient corticosteroid use and hospitalizations as a surrogate for IBD flare.
Predictors evaluated included age, sex, race, use of corticosteroid-sparing immunosuppressive medications (immunomodulators and/or anti-TNF), longitudinal laboratory data, and number of previous IBD-related hospitalizations and outpatient corticosteroid prescriptions. We constructed models using logistic regression and machine learning methods (random forest [RF]) to predict the combined end point of hospitalization and/or corticosteroid use for IBD within 6 months.
We identified 20,368 Veterans Health Administration patients with the first (index) IBD diagnosis between 2002 and 2009. Area under the receiver operating characteristic curve (AuROC) for the baseline logistic regression model was 0.68 (95% confidence interval [CI], 0.67-0.68). AuROC for the RF longitudinal model was 0.85 (95% CI, 0.84-0.85). AuROC for the RF longitudinal model using previous hospitalization or steroid use was 0.87 (95% CI, 0.87-0.88). The 5 leading independent risk factors for future hospitalization or steroid use were age, mean serum albumin, immunosuppressive medication use, and mean and highest platelet counts. Previous hospitalization and corticosteroid use were highly predictive when included in specified models.
A novel machine learning model substantially improved our ability to predict IBD-related hospitalization and outpatient steroid use. This model could be used at point of care to distinguish patients at high and low risk for disease flare, allowing individualized therapeutic management.
炎症性肠病(IBD)是一种慢性疾病,其特点是发作和缓解期不可预测。能够准确预测疾病进程的工具将极大地辅助治疗决策。本研究旨在构建一个能够准确预测门诊皮质类固醇使用和住院作为 IBD 发作替代指标的联合终点的模型。
评估的预测因素包括年龄、性别、种族、皮质类固醇保留免疫抑制剂(免疫调节剂和/或抗 TNF)的使用、纵向实验室数据以及之前 IBD 相关住院和门诊皮质类固醇处方的数量。我们使用逻辑回归和机器学习方法(随机森林[RF])构建模型,以预测在 6 个月内 IBD 的住院和/或皮质类固醇使用的联合终点。
我们确定了 20368 名退伍军人健康管理局患者,他们在 2002 年至 2009 年间首次(索引)诊断为 IBD。基线逻辑回归模型的接收者操作特征曲线下面积(AuROC)为 0.68(95%置信区间[CI],0.67-0.68)。RF 纵向模型的 AuROC 为 0.85(95%CI,0.84-0.85)。使用之前的住院或类固醇使用的 RF 纵向模型的 AuROC 为 0.87(95%CI,0.87-0.88)。未来住院或类固醇使用的 5 个主要独立危险因素是年龄、平均血清白蛋白、免疫抑制剂的使用以及平均和最高血小板计数。当包含在特定模型中时,之前的住院和皮质类固醇使用具有高度预测性。
一种新的机器学习模型极大地提高了我们预测 IBD 相关住院和门诊类固醇使用的能力。该模型可用于护理点,以区分疾病发作风险高和低的患者,从而实现个体化治疗管理。