Suppr超能文献

复制炎症性肠病患者住院和使用皮质类固醇预测算法。

Replicating prediction algorithms for hospitalization and corticosteroid use in patients with inflammatory bowel disease.

机构信息

Genentech, Inc., South San Francisco, California, United States of America.

Roche Pharma AG, Basel, Switzerland.

出版信息

PLoS One. 2021 Sep 20;16(9):e0257520. doi: 10.1371/journal.pone.0257520. eCollection 2021.

Abstract

INTRODUCTION

Previous work had shown that machine learning models can predict inflammatory bowel disease (IBD)-related hospitalizations and outpatient corticosteroid use based on patient demographic and laboratory data in a cohort of United States Veterans. This study aimed to replicate this modeling framework in a nationally representative cohort.

METHODS

A retrospective cohort design using Optum Electronic Health Records (EHR) were used to identify IBD patients, with at least 12 months of follow-up between 2007 and 2018. IBD flare was defined as an inpatient/emergency visit with a diagnosis of IBD or an outpatient corticosteroid prescription for IBD. Predictors included demographic and laboratory data. Logistic regression and random forest (RF) models were used to predict IBD flare within 6 months of each visit. A 70% training and 30% validation approach was used.

RESULTS

A total of 95,878 patients across 780,559 visits were identified. Of these, 22,245 (23.2%) patients had at least one IBD flare. Patients were predominantly White (87.7%) and female (57.1%), with a mean age of 48.0 years. The logistic regression model had an area under the receiver operating curve (AuROC) of 0.66 (95% CI: 0.65-0.66), sensitivity of 0.69 (95% CI: 0.68-0.70), and specificity of 0.74 (95% CI: 0.73-0.74) in the validation cohort. The RF model had an AuROC of 0.80 (95% CI: 0.80-0.81), sensitivity of 0.74 (95% CI: 0.73-0.74), and specificity of 0.72 (95% CI: 0.72-0.72) in the validation cohort. Important predictors of IBD flare in the RF model were the number of previous flares, age, potassium, and white blood cell count.

CONCLUSION

The machine learning modeling framework was replicated and results showed a similar predictive accuracy in a nationally representative cohort of IBD patients. This modeling framework could be embedded in routine practice as a tool to distinguish high-risk patients for disease activity.

摘要

介绍

先前的工作表明,基于美国退伍军人队列中的患者人口统计学和实验室数据,机器学习模型可以预测炎症性肠病(IBD)相关住院和门诊皮质类固醇的使用。本研究旨在复制这一建模框架在全国代表性队列中的应用。

方法

使用 Optum 电子健康记录(EHR)进行回顾性队列设计,以确定至少在 2007 年至 2018 年期间有 12 个月随访的 IBD 患者。IBD 发作定义为 IBD 的住院/急诊就诊或 IBD 的门诊皮质类固醇处方。预测因子包括人口统计学和实验室数据。使用逻辑回归和随机森林(RF)模型预测每次就诊后 6 个月内的 IBD 发作。采用 70%的训练和 30%的验证方法。

结果

在 780559 次就诊中,共确定了 95878 名患者。其中,22245 名(23.2%)患者至少有一次 IBD 发作。患者主要为白人(87.7%)和女性(57.1%),平均年龄为 48.0 岁。逻辑回归模型在验证队列中的 AUC 为 0.66(95%CI:0.65-0.66),灵敏度为 0.69(95%CI:0.68-0.70),特异性为 0.74(95%CI:0.73-0.74)。随机森林模型在验证队列中的 AUC 为 0.80(95%CI:0.80-0.81),灵敏度为 0.74(95%CI:0.73-0.74),特异性为 0.72(95%CI:0.72-0.72)。RF 模型中 IBD 发作的重要预测因子是先前发作的次数、年龄、钾和白细胞计数。

结论

在全国代表性的 IBD 患者队列中复制了机器学习建模框架,结果显示出相似的预测准确性。该建模框架可以嵌入常规实践中,作为区分疾病活动高危患者的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a62/8452029/c922ec0e9dd8/pone.0257520.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验