Rheumatology, Maastricht University Medical Center and CAPHRI Research Institute, Maastricht, the Netherlands.
Health Promotion and Education, Maastricht University, Maastricht, the Netherlands.
Rheumatology (Oxford). 2018 Mar 1;57(3):548-554. doi: 10.1093/rheumatology/kex440.
To develop algorithms for calculating the Rheumatic Diseases Comorbidity Index (RDCI), Charlson-Deyo Index (CDI) and Functional Comorbidity Index (FCI) from the Medical Dictionary for Regulatory Activities (MedDRA), and to assess how these MedDRA-derived indices predict clinical outcomes, utility and health resource utilization (HRU).
Two independent researchers linked the preferred terms of the MedDRA classification into the conditions included in the RDCI, the CDI and the FCI. Next, using data from the Norwegian Register-DMARD study (a register of patients with inflammatory joint diseases treated with DMARDs), the explanatory value of these indices was studied in models adjusted for age, gender and DAS28. Model fit statistics were compared in generalized estimating equation (prediction of outcome over time) models using as outcomes: modified HAQ, HAQ, physical and mental component summary of SF-36, SF6D and non-RA related HRU.
Among 4126 patients with RA [72% female, mean (s.d.) age 56 (14) years], median (interquartile range) of RDCI at baseline was 0.0 (1.0) [range 0-6], CDI 0.0 (0.0) [0-7] and FCI 0.0 (1.0) [0-6]. All the comorbidity indices were associated with each outcome, and differences in their performance were moderate. The RDCI and FCI performed better on clinical outcomes: modified HAQ and HAQ, hospitalization, physical and mental component summary, and SF6D. Any non-RA related HRU was best predicted by RDCI followed by CDI.
An algorithm is now available to compute three commonly used comorbidity indices from MedDRA classification. Indices performed comparably well in predicting a variety of outcomes, with the CDI performing slightly worse when predicting outcomes reflecting functioning and health.
开发从监管活动医学词典(MedDRA)计算风湿性疾病合并症指数(RDCI)、Charlson-Deyo 指数(CDI)和功能合并症指数(FCI)的算法,并评估这些 MedDRA 衍生指数如何预测临床结局、效用和健康资源利用(HRU)。
两名独立研究人员将 MedDRA 分类的首选术语链接到 RDCI、CDI 和 FCI 中包含的条件。接下来,使用来自挪威登记-DMARD 研究(炎症性关节疾病患者接受 DMARD 治疗的登记处)的数据,在调整年龄、性别和 DAS28 的模型中研究了这些指数的解释价值。使用作为结局的改良 HAQ、HAQ、SF-36 的身体和心理成分综合评分、SF6D 和非 RA 相关 HRU,在广义估计方程(随时间预测结局)模型中比较模型拟合统计数据。
在 4126 名 RA 患者中[72%为女性,平均(标准差)年龄 56(14)岁],基线时 RDCI 的中位数(四分位距)为 0.0(1.0)[范围 0-6],CDI 为 0.0(0.0)[0-7],FCI 为 0.0(1.0)[0-6]。所有合并症指数均与每个结局相关,其表现差异适中。RDCI 和 FCI 在临床结局方面表现更好:改良 HAQ 和 HAQ、住院、身体和心理成分综合评分以及 SF6D。任何非 RA 相关 HRU 均由 RDCI 最佳预测,其次是 CDI。
现在可以从 MedDRA 分类计算三种常用的合并症指数的算法。这些指数在预测各种结局方面表现相当,CDI 在预测反映功能和健康的结局时表现略差。