Suppr超能文献

通过CRFP处理可改善3D打印骨支架的生物力学性能。

Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP.

作者信息

Helguero Carlos G, Mustahsan Vamiq M, Parmar Sunjit, Pentyala Sahana, Pfail John L, Kao Imin, Komatsu David E, Pentyala Srinivas

机构信息

Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA.

Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador.

出版信息

J Orthop Surg Res. 2017 Dec 22;12(1):195. doi: 10.1186/s13018-017-0700-2.

Abstract

BACKGROUND

One of the major challenges in orthopedics is to develop implants that overcome current postoperative problems such as osteointegration, proper load bearing, and stress shielding. Current implant techniques such as allografts or endoprostheses never reach full bone integration, and the risk of fracture due to stress shielding is a major concern. To overcome this, a novel technique of reverse engineering to create artificial scaffolds was designed and tested. The purpose of the study is to create a new generation of implants that are both biocompatible and biomimetic.

METHODS

3D-printed scaffolds based on physiological trabecular bone patterning were printed. MC3T3 cells were cultured on these scaffolds in osteogenic media, with and without the addition of Calcitonin Receptor Fragment Peptide (CRFP) in order to assess bone formation on the surfaces of the scaffolds. Integrity of these cell-seeded bone-coated scaffolds was tested for their mechanical strength.

RESULTS

The results show that cellular proliferation and bone matrix formation are both supported by our 3D-printed scaffolds. The mechanical strength of the scaffolds was enhanced by trabecular patterning in the order of 20% for compression strength and 60% for compressive modulus. Furthermore, cell-seeded trabecular scaffolds modulus increased fourfold when treated with CRFP.

CONCLUSION

Upon mineralization, the cell-seeded trabecular implants treated with osteo-inductive agents and pretreated with CRFP showed a significant increase in the compressive modulus. This work will lead to creating 3D structures that can be used in the replacement of not only bone segments, but entire bones.

摘要

背景

骨科领域的主要挑战之一是研发能够克服当前术后问题的植入物,如骨整合、适当的承重和应力遮挡。目前的植入技术,如同种异体移植或内置假体,从未实现完全的骨整合,且因应力遮挡导致骨折的风险是一个主要问题。为克服这一问题,设计并测试了一种用于制造人工支架的逆向工程新技术。本研究的目的是制造出新一代具有生物相容性和仿生特性的植入物。

方法

基于生理小梁骨模式打印3D支架。将MC3T3细胞在这些支架上于成骨培养基中培养,添加和不添加降钙素受体片段肽(CRFP),以评估支架表面的骨形成情况。对这些接种细胞的骨涂层支架的完整性进行机械强度测试。

结果

结果表明,我们的3D打印支架支持细胞增殖和骨基质形成。小梁模式使支架的机械强度得到增强,抗压强度提高了20%,压缩模量提高了60%。此外,用CRFP处理后,接种细胞的小梁支架模量增加了四倍。

结论

矿化后,用骨诱导剂处理并用CRFP预处理的接种细胞小梁植入物的压缩模量显著增加。这项工作将导致创建不仅可用于替代骨段,还可用于替代整个骨骼的3D结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/450f/5741919/80eb29006d87/13018_2017_700_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验