Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH, 44325, USA.
Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA, 92093, USA.
Nat Commun. 2017 Dec 22;8(1):2278. doi: 10.1038/s41467-017-02451-x.
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components.
波长相关光散射产生的颜色是自然界中视觉交流的关键组成部分,在求偶期间结构色动物的视觉信号中尤其强烈。两种微型孔雀蜘蛛(Maratus robinsoni 和 M. chrysomelas)使用微小的结构化鳞片(~40×10μm)向雌性求爱,这些鳞片反射全视觉光谱。通过 TEM 和光学建模,我们表明蜘蛛的鳞片在微尺度 3D 凸面上具有 2D 纳米光栅,其分辨率至少是相同周期的传统 2D 衍射光栅的两倍。虽然光分散元件需要长的光程才能分辨单个波长,但这限制了当前光谱仪的体积,我们的纳米 3D 打印原型表明,孔雀蜘蛛鳞片的设计原理可以启发新型的微型光分散元件。