Wilts Bodo D, Otto Jürgen, Stavenga Doekele G
Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Switzerland
Grevillea Court 19 Grevillea Avenue St. Ives New South Wales 2075 Australia.
Nanoscale Adv. 2020 Feb 21;2(3):1122-1127. doi: 10.1039/c9na00494g. eCollection 2020 Mar 17.
Controlling light through photonic nanostructures is important for everyday optical components, from spectrometers to data storage and readout. In nature, nanostructured materials produce wavelength-dependent colors that are key for visual communication across animals. Here, we investigate two Australian peacock spiders, which court females in complex dances with either iridescent color patterns () or an approximately angle-independent blue coloration (). Using light microscopy, FIB-SEM imaging, imaging scatterometry, and optical modeling, we show that both color displays originate from nanogratings on structured 3D surfaces. The difference in angle-dependency of the coloration results from a combination of the local scale shape and the nanograting period. The iridescence of arises from ordered gratings on locally flat substrates, while the more stable blue colors of originate from ultra-dense, curved gratings with multiscale disorder. Our results shed light on the design principle of the peacock spiders' scales and could inspire novel dispersive components, used in spectroscopic applications.
通过光子纳米结构控制光对于从光谱仪到数据存储和读出等日常光学组件至关重要。在自然界中,纳米结构材料会产生与波长相关的颜色,这是动物间视觉通信的关键。在这里,我们研究了两种澳大利亚孔雀蜘蛛,它们在复杂的舞蹈中向雌性求偶,一种具有彩虹色图案(),另一种具有近似与角度无关的蓝色()。通过光学显微镜、聚焦离子束扫描电子显微镜成像、成像散射测量和光学建模,我们表明这两种颜色展示都源自结构化三维表面上的纳米光栅。颜色角度依赖性的差异是由局部尺度形状和纳米光栅周期共同作用的结果。的彩虹色源于局部平坦基板上的有序光栅,而更稳定的蓝色则源于具有多尺度无序的超密集、弯曲光栅。我们的结果揭示了孔雀蜘蛛鳞片的设计原理,并可能启发用于光谱应用的新型色散组件。