Chojnacka Martyna, Feliks Mikolaj, Beker Wiktor, Sokalski W Andrzej
Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
J Mol Model. 2017 Dec 22;24(1):28. doi: 10.1007/s00894-017-3559-6.
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol].
催化场阐明了分子环境最优电荷分布的拓扑结构,该结构可降低任何涉及势垒穿越过程(如化学反应、键旋转等)的活化能。到目前为止,这项技术已成功应用于预测由与构成第一水合层的单个水分子的分子间相互作用、酶中的氨基酸突变或沸石中的硅→铝取代所产生的催化效应。在本论文中,已研究了两个模型反应的氢到氟(H→F)取代效应,表明催化场概念在涉及分子内相互作用的系统中具有定性适用性。图形摘要 氢到氟(H→F)取代对活化能的影响 [千卡/摩尔]