Hanashima Shinya, Suga Akitsugu, Yamaguchi Yoshiki
Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan.
Carbohydr Res. 2018 Feb 1;456:53-60. doi: 10.1016/j.carres.2017.12.002. Epub 2017 Dec 14.
Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. H and C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the J constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from J and J coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events.
被切割的 N-聚糖通过调节其载体蛋白的作用和定位在肿瘤迁移和阿尔茨海默病中发挥重要作用。这些生物学功能通常根据连接的 N-聚糖(有无切割型 N-乙酰葡糖胺)的构象来讨论。为了深入了解切割型 N-乙酰葡糖胺对聚糖构象的影响,对两对合成 N-聚糖(有无切割型 N-乙酰葡糖胺)进行了系统的核磁共振结构分析。分析表明,末端 N-乙酰葡糖胺和切割型 N-乙酰葡糖胺共同作用限制了 N-聚糖α1-3 和α1-6 分支的构象。氢和碳化学位移比较表明,切割型 N-乙酰葡糖胺直接调节局部构象。核心甘露糖与α1-3 分支甘露糖之间独特的核 Overhauser 效应(NOE)相关性以及糖苷键的耦合常数表明,切割型 N-乙酰葡糖胺限制了 1-3 分支的构象。由耦合常数 J 和 J' 得出的核心甘露糖与α1-6 分支甘露糖之间糖苷键的角度表明,末端 N-乙酰葡糖胺将ψ角的分布限制在 180°,并且在存在末端 N-乙酰葡糖胺的情况下,切割型 N-乙酰葡糖胺使ω角的分布增加了 60°。切割型 N-乙酰葡糖胺对分支构象的限制对蛋白质-聚糖相互作用及后续生物学事件产生重要影响是可行的。