Suppr超能文献

基于 MRI 的胫骨远端有限元评估与机械测试的准确性比较。

Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing.

机构信息

Department of Radiology, University of Pennsylvania, United States; Department of Orthopaedic Surgery, University of Pennsylvania, United States.

Department of Radiology, University of Pennsylvania, United States.

出版信息

Bone. 2018 Mar;108:71-78. doi: 10.1016/j.bone.2017.12.023. Epub 2017 Dec 24.

Abstract

High-resolution MRI-derived finite element analysis (FEA) has been used in translational research to estimate the mechanical competence of human bone. However, this method has yet to be validated adequately under in vivo imaging spatial resolution or signal-to-noise conditions. We therefore compared MRI-based metrics of bone strength to those obtained from direct, mechanical testing. The study was conducted on tibiae from 17 human donors (12 males and five females, aged 33 to 88years) with no medical history of conditions affecting bone mineral homeostasis. A 25mm segment from each distal tibia underwent MR imaging in a clinical 3-Tesla scanner using a fast large-angle spin-echo (FLASE) sequence at 0.137mm×0.137mm×0.410mm voxel size, in accordance with in vivo scanning protocol. The resulting high-resolution MR images were processed and used to generate bone volume fraction maps, which served as input for the micro-level FEA model. Simulated compression was applied to compute stiffness, yield strength, ultimate strength, modulus of resilience, and toughness, which were then compared to metrics obtained from mechanical testing. Moderate to strong positive correlations were found between computationally and experimentally derived values of stiffness (R=0.77, p<0.0001), yield strength (R=0.38, p=0.0082), ultimate strength (R=0.40, p=0.0067), and resilience (R=0.46, p=0.0026), but only a weak, albeit significant, correlation was found for toughness (R=0.26, p=0.036). Furthermore, experimentally derived yield strength and ultimate strength were moderately correlated with MRI-derived stiffness (R=0.48, p=0.0022 and R=0.58, p=0.0004, respectively). These results suggest that high-resolution MRI-based finite element (FE) models are effective in assessing mechanical parameters of distal skeletal extremities.

摘要

高分辨率 MRI 衍生的有限元分析(FEA)已被用于转化研究,以估计人体骨骼的机械能力。然而,这种方法在体内成像空间分辨率或信噪比条件下尚未得到充分验证。因此,我们将基于 MRI 的骨强度指标与直接机械测试获得的指标进行了比较。该研究在 17 名人类供体(12 名男性和 5 名女性,年龄 33 至 88 岁)的胫骨上进行,这些供体没有影响骨矿物质稳态的病史。每个胫骨远端的 25mm 段在临床 3.0T 扫描仪中使用快速大角度自旋回波(FLASE)序列进行 MR 成像,体素大小为 0.137mm×0.137mm×0.410mm,符合体内扫描方案。对生成的高分辨率 MR 图像进行处理,并用于生成骨体积分数图,该图作为微级 FEA 模型的输入。模拟压缩应用于计算刚度、屈服强度、极限强度、弹性模量和韧性,然后将这些值与机械测试获得的度量值进行比较。在计算和实验得出的刚度(R=0.77,p<0.0001)、屈服强度(R=0.38,p=0.0082)、极限强度(R=0.40,p=0.0067)和弹性(R=0.46,p=0.0026)方面,发现计算值和实验值之间存在中度至强正相关,但韧性方面仅存在弱但显著的相关性(R=0.26,p=0.036)。此外,实验得出的屈服强度和极限强度与 MRI 衍生的刚度中度相关(R=0.48,p=0.0022 和 R=0.58,p=0.0004)。这些结果表明,基于高分辨率 MRI 的有限元(FE)模型在评估四肢远端骨骼的机械参数方面是有效的。

相似文献

1
Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing.
Bone. 2018 Mar;108:71-78. doi: 10.1016/j.bone.2017.12.023. Epub 2017 Dec 24.
3
Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
Med Phys. 2022 Jun;49(6):3886-3899. doi: 10.1002/mp.15629. Epub 2022 Apr 5.
8
Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models.
Biomech Model Mechanobiol. 2021 Jun;20(3):941-955. doi: 10.1007/s10237-021-01422-y. Epub 2021 Feb 1.
9
Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images.
Bone. 2010 Sep;47(3):556-63. doi: 10.1016/j.bone.2010.05.039. Epub 2010 May 31.
10
Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
Bone. 2015 Mar;72:71-80. doi: 10.1016/j.bone.2014.11.006. Epub 2014 Nov 15.

引用本文的文献

1
More accurate trabecular bone imaging using UTE MRI at the resonance frequency of fat.
Bone. 2024 Jul;184:117096. doi: 10.1016/j.bone.2024.117096. Epub 2024 Apr 15.
2
The Application of Advanced Bone Imaging Technologies in Sports Medicine.
Radiol Res Pract. 2023 Dec 4;2023:7412540. doi: 10.1155/2023/7412540. eCollection 2023.
3
Biomechanical models: key considerations in study design.
OTA Int. 2021 Apr 15;4(2 Suppl). doi: 10.1097/OI9.0000000000000099. eCollection 2021 Apr.
4
Mechanical Biomarkers in Bone Using Image-Based Finite Element Analysis.
Curr Osteoporos Rep. 2023 Jun;21(3):266-277. doi: 10.1007/s11914-023-00784-9. Epub 2023 Apr 20.
7
Finite element analysis of bone mechanical properties using MRI-derived bound and pore water concentration maps.
Comput Methods Biomech Biomed Engin. 2023 Jun;26(8):905-916. doi: 10.1080/10255842.2022.2098016. Epub 2022 Jul 13.
9
MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review.
Magn Reson Imaging. 2022 May;88:9-19. doi: 10.1016/j.mri.2022.01.009. Epub 2022 Jan 25.
10
Validation and Optimization of Proximal Femurs Microstructure Analysis Using High Field and Ultra-High Field MRI.
Diagnostics (Basel). 2021 Sep 2;11(9):1603. doi: 10.3390/diagnostics11091603.

本文引用的文献

8
Association between physical activity and risk of fracture.
J Bone Miner Res. 2014 Jan;29(1):202-11. doi: 10.1002/jbmr.2019.
10
Computationally-optimized bone mechanical modeling from high-resolution structural images.
PLoS One. 2012;7(4):e35525. doi: 10.1371/journal.pone.0035525. Epub 2012 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验