Suppr超能文献

基于 CT 成像和连续力学模型的小梁骨微观结构的有限元分析。

Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.

机构信息

Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.

Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Med Phys. 2022 Jun;49(6):3886-3899. doi: 10.1002/mp.15629. Epub 2022 Apr 5.

Abstract

PURPOSE

Osteoporosis is a bone disease associated with enhanced bone loss, microstructural degeneration, and fracture-risk. Finite element (FE) modeling is used to estimate trabecular bone (Tb) modulus from high-resolution three-dimensional (3-D) imaging modalities including micro-computed tomography (CT), magnetic resonance imaging (MRI), and high-resolution peripheral quantitative CT (HR-pQCT). This paper validates an application of voxel-based continuum finite element analysis (FEA) to predict Tb modulus from clinical CT imaging under a condition similar to in vivo imaging by comparing with measures derived by micro-CT and experimental approaches.

METHOD

Voxel-based continuum FEA methods for CT imaging were implemented using linear and nonlinear models and applied on distal tibial scans under a condition similar to in vivo imaging. First, tibial axis in a CT scan was aligned with the coordinate z-axis at 150 μm isotropic voxels. FEA was applied on an upright cylindrical volume of interests (VOI) with its axis coinciding with the tibial bone axis. Voxel volume, edge, and vertex elements and their connectivity were defined as per the isotropic image grid. A calibration phantom was used to calibrate CT numbers in Hounsfield unit to bone mineral density (BMD) values, which was then converted into calcium hydroxyapatite (CHA) density. Mechanical properties at each voxel volume element was defined using its ash-density defined on CT-derived CHA density. For FEA, the bottom surface of the cylindrical VOI was fixed and a constant displacement was applied along the z-direction at each vertex element on the top surface to simulate a physical axial compressive loading condition. Finally, a Poisson's ratio of 0.3 was applied, and Tb modulus (MPa) was computed as the ratio of average von Mises stress (MPa) of volume elements on the top surface and the applied displacement. FEA parameters including mesh element size, substep number, and different tolerance values were optimized.

RESULTS

CT-derived Tb modulus values using continuum FEA showed high linear correlation with the micro-CT-derived reference values (r ∈ [0.87 0.90]) as well as experimentally measured values (r ∈ [0.80 0.87]). Linear correlation of computed modulus with their reference values using continuum FEA with linear modeling was comparable with that obtained by nonlinear modeling. Nonlinear continuum FEA-based modulus values (mean of 1087.2 MPa) showed greater difference from their reference values (mean of 1498.9 MPa using micro-CT-based FEA) as compared with linear continuum methods. High repeat CT scan reproducibility (intra-class correlation [ICC] = 0.98) was observed for computed modulus values using both linear and nonlinear continuum FEA. It was observed that high stress regions coincide with Tb microstructure as fuzzily characterized by BMD values. Distributions of von Mises stress over Tb microstructure and marrow regions were significantly different (p < 10 ).

CONCLUSION

Voxel-based continuum FEA offers surrogate measures of Tb modulus from CT imaging under a condition similar to in vivo imaging that alleviates the need for segmentation of Tb and marrow regions, while accounting for bone distribution at the microstructural level. This relaxation of binary segmentation will extend the scope of FEA application to assess mechanical properties of bone microstructure at relatively low-resolution imaging.

摘要

目的

骨质疏松症是一种与骨丢失增加、微观结构退化和骨折风险相关的骨骼疾病。有限元(FE)建模用于从高分辨率三维(3-D)成像方式(包括微计算机断层扫描(CT)、磁共振成像(MRI)和高分辨率外周定量 CT(HR-pQCT))估计小梁骨(Tb)模量。本文通过与微 CT 和实验方法得出的测量值进行比较,验证了基于体素的连续有限元分析(FEA)在类似于体内成像的条件下从临床 CT 成像预测 Tb 模量的应用,该方法适用于线性和非线性模型。

方法

在类似于体内成像的条件下,通过使用线性和非线性模型,对远端胫骨扫描进行基于体素的连续 FEA 方法实现。首先,将 CT 扫描中的胫骨轴与 z 轴对齐,体素大小为 150 μm 各向同性。FEA 应用于与胫骨骨轴重合的直立圆柱形感兴趣区(VOI)。根据各向同性图像网格定义体素体积、边缘和顶点元素及其连接。使用校准体模将 CT 数在亨氏单位校准为骨密度(BMD)值,然后将其转换为羟磷灰石(CHA)密度。使用其在 CT 衍生的 CHA 密度上定义的灰分密度,为每个体素体积元素定义力学性能。对于 FEA,将圆柱形 VOI 的底面固定,并在顶部表面上的每个顶点元素处沿 z 方向施加恒定位移,以模拟物理轴向压缩加载条件。最后,应用泊松比为 0.3,并将 Tb 模量(MPa)计算为顶部表面上体积元素的平均冯·米塞斯应力(MPa)与施加位移的比值。优化了 FEA 参数,包括网格元素尺寸、子步数量和不同的公差值。

结果

使用连续 FEA 从 CT 衍生的 Tb 模量值与微 CT 衍生的参考值(r∈[0.87,0.90])以及实验测量值(r∈[0.80,0.87])具有高度线性相关性。使用线性建模的连续 FEA 计算出的模量与参考值之间的线性相关性与使用非线性建模获得的相关性相当。与线性连续 FEA 相比,基于非线性连续 FEA 的模量值(平均值为 1087.2 MPa)与其参考值(基于微 CT 的 FEA 的平均值为 1498.9 MPa)之间的差异更大。使用线性和非线性连续 FEA 计算出的模量值具有较高的重复 CT 扫描可重复性(组内相关系数 [ICC] = 0.98)。观察到高应力区域与 Tb 微结构重合,如 BMD 值模糊地表示。Tb 微观结构和骨髓区域的冯·米塞斯应力分布有显著差异(p < 10)。

结论

基于体素的连续 FEA 提供了类似于体内成像条件下的 Tb 模量替代测量值,无需对 Tb 和骨髓区域进行分割,同时考虑了微观结构水平的骨分布。这种对二进制分割的放宽将扩展 FEA 应用的范围,以评估相对低分辨率成像中骨微观结构的力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718d/9325403/9537db4fd12a/MP-49-3886-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验